Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Comparison of Inhibition Potentials of Drugs against Zidovudine Glucuronidation in Rat Hepatocytes and Liver Microsomes

Yuji Mano, Takashi Usui and Hidetaka Kamimura
Drug Metabolism and Disposition April 2007, 35 (4) 602-606; DOI: https://doi.org/10.1124/dmd.106.014225
Yuji Mano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takashi Usui
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hidetaka Kamimura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Hepatocytes and liver microsomes are considered to be useful for investigating drug metabolism catalyzed mainly via glucuronidation. However, there have been few reports comparing the glucuronidation inhibition potentials of drug in hepatocytes to those in liver microsomes. 3′-Azido-3′-deoxythymidine (AZT, zidovudine) glucuronidation (AZTG) is the major metabolic pathway for AZT. In this study, the inhibition potentials of drugs against UDP-glucuronosyltransferase (UGT)-catalyzed AZTG in the hepatocytes and liver microsomes of rats are compared. The AZTG inhibition potentials of diclofenac, diflunisal, fluconazole, indomethacin, ketoprofen, mefenamic acid, naproxen, niflumic acid, and valproic acid in liver microsomes and hepatocytes were investigated using liquid chromatography with tandem mass spectrometry. Diflunisal (inhibition type: noncompetitive) inhibited AZTG most potently in rat liver microsomes (RLMs) with an IC50 value of 34 μM. The IC50 values of diclofenac, fluconazole, indomethacin, ketoprofen, mefenamic acid, naproxen, niflumic acid, and valproic acid against AZTG in RLMs ranged from 34 to 1791 μM. Diclofenac, diflunisal, indomethacin, ketoprofen, naproxen, and valproic acid inhibited AZTG in hepatocytes with IC50 values of 58, 37, 88, 361, 486, and 281 μM, respectively. These values were similar to those obtained in RLMs. In conclusion, the AZT glucuronidation inhibition potentials of drugs in the hepatocytes and liver microsomes of rats were found to be similar, and liver microsomes can be useful for evaluating UGT isozyme inhibition potentials.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.106.014225.

  • ABBREVIATIONS: UGT, UDP-glucuronosyltransferase; AZT, 3′-azido-3′-deoxythymidine; AZTG, AZT glucuronidation; P450, cytochrome P450; HLM, human liver microsome; LC-MS/MS, liquid chromatography with tandem mass spectrometry; RLM, rat liver microsome; UDPGA, UDP-glucuronic acid; WME, Williams' Medium E.

    • Received December 6, 2006.
    • Accepted January 25, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 35 (4)
Drug Metabolism and Disposition
Vol. 35, Issue 4
1 Apr 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Comparison of Inhibition Potentials of Drugs against Zidovudine Glucuronidation in Rat Hepatocytes and Liver Microsomes
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Comparison of Inhibition Potentials of Drugs against Zidovudine Glucuronidation in Rat Hepatocytes and Liver Microsomes

Yuji Mano, Takashi Usui and Hidetaka Kamimura
Drug Metabolism and Disposition April 1, 2007, 35 (4) 602-606; DOI: https://doi.org/10.1124/dmd.106.014225

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Comparison of Inhibition Potentials of Drugs against Zidovudine Glucuronidation in Rat Hepatocytes and Liver Microsomes

Yuji Mano, Takashi Usui and Hidetaka Kamimura
Drug Metabolism and Disposition April 1, 2007, 35 (4) 602-606; DOI: https://doi.org/10.1124/dmd.106.014225
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Metabolic enzymes in nintedanib metabolism
  • Mechanism of AO Inactivation by Hydralazine
  • Warfarin PBPK modeling with target binding
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics