Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Structure-Activity Relationships for Interaction with Multidrug Resistance Protein 2 (ABCC2/MRP2): The Role of Torsion Angle for a Series of Biphenyl-Substituted Heterocycles

Yurong Lai, Li Xing, Gennadiy I. Poda and Yiding Hu
Drug Metabolism and Disposition June 2007, 35 (6) 937-945; DOI: https://doi.org/10.1124/dmd.106.013250
Yurong Lai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Li Xing
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gennadiy I. Poda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yiding Hu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Multidrug resistance protein 2 (ABCC2/MRP2) is an ATP-binding cassette transporter involved in the absorption, distribution, and excretion of drugs and xenobiotics. Identifying compounds that are ABCC2/MRP2 substrates and/or inhibitors and understanding their structure-activity relationships (SARs) are important considerations in the selection and optimization of drug candidates. In the present study, the interactions between ABCC2/MRP2 and a series of biphenyl-substituted heterocycles were evaluated using Caco-2 cells and human ABCC2/MRP2 gene-transfected Madin-Darby canine kidney cells. It was observed that ABCC2/MRP2 transport and/or inhibition profile, both in nature and in magnitude, depends strongly on the substitution patterns of the biphenyl system. In particular, different ortho-substitutions cause various degrees of twisting between the two-phenyl rings, resulting in changing interactions between the ligands and ABCC2/MRP2. The compounds with small ortho functions (hydrogen, fluorine, and oxygen) and, thus, the ones displaying the smallest torsion angles of biphenyl (37-45°) are neither substrates nor inhibitors of human ABCC2/MRP2. The transporter interactions increase as the steric bulkiness of the ortho-substitutions increase. When the tested compounds are 2-methyl substituted biphenyls, they exhibit moderate torsion angles (54-65°) and behave as ABCC2/MRP2 substrates as well as mild inhibitors [10-40% compared with 3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethyl-sulfanyl)methylsulfanyl] propionic acid (MK571)]. For the 2,2′-dimethyl substituted biphenyls, the torsions are enhanced (78-87°) and so is the inhibition of ABCC2/MRP2. This class of compounds behaves as strong inhibitors of ABCC2/MRP2. These results can be used to define the three-dimensional structural requirements of ABCC2/MRP2 interaction with their substrates and inhibitors, as well as to provide SAR guidance to support drug discovery.

Footnotes

  • doi:10.1124/dmd.106.013250.

  • ABBREVIATIONS: MCP, multidrug resistance-associated protein; ABC, ATP-binding cassette; ABCC2/MRP2, multidrug resistance protein 2; SAR, structure-activity relationship; GSH, glutathione; GST, glutathione S-transferase; Caco-2, human colon carcinoma cell; MDCK, Madin-Darby canine kidney; FBS, fetal bovine serum; HBSS, Hanks' balanced salt solution; MK571, [3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethyl-carbamoylethylsulfanyl)methylsulfanyl] propionic acid]; calcein-AM, calcein acetoxymethyl ester; MS, mass spectrometry; P-gp, P-glycoprotein; ClogP, ClogP; tPSA, topological polar surface area; LogD, distribution coefficient; HPLC, high-performance liquid chromatography; CoMFA, comparative molecular field analysis; IUPAC, International Union of Pure and Applied Chemistry.

    • Received October 10, 2006.
    • Accepted March 14, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 35 (6)
Drug Metabolism and Disposition
Vol. 35, Issue 6
1 Jun 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Structure-Activity Relationships for Interaction with Multidrug Resistance Protein 2 (ABCC2/MRP2): The Role of Torsion Angle for a Series of Biphenyl-Substituted Heterocycles
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Structure-Activity Relationships for Interaction with Multidrug Resistance Protein 2 (ABCC2/MRP2): The Role of Torsion Angle for a Series of Biphenyl-Substituted Heterocycles

Yurong Lai, Li Xing, Gennadiy I. Poda and Yiding Hu
Drug Metabolism and Disposition June 1, 2007, 35 (6) 937-945; DOI: https://doi.org/10.1124/dmd.106.013250

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Structure-Activity Relationships for Interaction with Multidrug Resistance Protein 2 (ABCC2/MRP2): The Role of Torsion Angle for a Series of Biphenyl-Substituted Heterocycles

Yurong Lai, Li Xing, Gennadiy I. Poda and Yiding Hu
Drug Metabolism and Disposition June 1, 2007, 35 (6) 937-945; DOI: https://doi.org/10.1124/dmd.106.013250
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Identification of payload-containing catabolites of ADCs
  • PK Interactions of Licorice with Cytochrome P450s
  • Biotransformation of Trastuzumab and Pertuzumab
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics