Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Central Nervous System Pharmacokinetics of the Mdr1 P-Glycoprotein Substrate CP-615,003: Intersite Differences and Implications for Human Receptor Occupancy Projections from Cerebrospinal Fluid Exposures

Karthik Venkatakrishnan, Elaine Tseng, Frederick R. Nelson, Hans Rollema, Jonathan L. French, Irina V. Kaplan, Weldon E. Horner and Megan A. Gibbs
Drug Metabolism and Disposition August 2007, 35 (8) 1341-1349; DOI: https://doi.org/10.1124/dmd.106.013953
Karthik Venkatakrishnan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elaine Tseng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frederick R. Nelson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hans Rollema
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonathan L. French
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Irina V. Kaplan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Weldon E. Horner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Megan A. Gibbs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The central nervous system (CNS) distribution and transport mechanisms of the investigational drug candidate CP-615,003 (N-[3-fluoro-4-[2-(propylamino)ethoxy]phenyl]-4,5,6,7-tetrahydro-4-oxo-1H-indole-3-carboxamide) and its active metabolite CP-900,725 have been characterized. Brain distribution of CP-615,003 and CP-900,725 was low in rats and mice (brain-to-serum ratio < 0.2). Cerebrospinal fluid (CSF)-to-serum ratios of CP-615,003 were 6- to 8-fold lower than the plasma unbound fraction in rats and dogs. In vitro, CP-615,003 displayed quinidine-like efflux in MDR1-expressing Madin-Darby canine kidney II cells. The brain-to-serum ratio of CP-615,003 in mdr1a/1b (–/–) mice was ∼7 times that in their wild-type counterparts, confirming that impaired CNS distribution was explained by P-gp efflux transport. In contrast, P-gp efflux did not explain the impaired CNS penetration of CP-900,725. Intracerebral microdialysis was used to characterize rat brain extracellular fluid (ECF) distribution. Interestingly, the ECF-to-serum ratio of the P-gp substrate CP-615,003 was 7-fold below the CSF-to-serum ratio, whereas this disequilibrium was not observed for CP-900,725. In a clinical study, steady-state CSF exposures were measured after administration of 100 mg of CP-615,003 b.i.d. The human CSF-to-plasma ratios of CP-615,003 and CP-900,725 were both ∼10-fold below their ex vivo plasma unbound fractions, confirming impaired human CNS penetration. Preliminary estimates of CNS receptor occupancy from human CSF concentrations were sensitive to assumptions regarding the magnitude of the CSF-ECF gradient for CP-615,003 in humans. In summary, this case provides an example of intersite differences in CNS pharmacokinetics of a P-gp substrate and potential implications for projection of human CNS receptor occupancy of transporter substrates from CSF pharmacokinetic data when direct imaging-based approaches are not feasible.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.106.013953.

  • ABBREVIATIONS: CNS, central nervous system; Kp, partition ratio; MDR1, human multidrug resistance protein 1; mdr1, mouse multidrug resistance protein 1; MDCK, Madin-Darby canine kidney II; A, apical; B, basolateral; ER, efflux ratio; P-gp, P-glycoprotein; CSF, cerebrospinal fluid; ECF, extracellular fluid; LC/MS/MS, liquid chromatography-tandem mass spectrometry; MeOH, methanol; Rt, retention time; FRO, fractional receptor occupancy.

    • Received November 16, 2006.
    • Accepted April 25, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 35 (8)
Drug Metabolism and Disposition
Vol. 35, Issue 8
1 Aug 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Central Nervous System Pharmacokinetics of the Mdr1 P-Glycoprotein Substrate CP-615,003: Intersite Differences and Implications for Human Receptor Occupancy Projections from Cerebrospinal Fluid Exposures
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Central Nervous System Pharmacokinetics of the Mdr1 P-Glycoprotein Substrate CP-615,003: Intersite Differences and Implications for Human Receptor Occupancy Projections from Cerebrospinal Fluid Exposures

Karthik Venkatakrishnan, Elaine Tseng, Frederick R. Nelson, Hans Rollema, Jonathan L. French, Irina V. Kaplan, Weldon E. Horner and Megan A. Gibbs
Drug Metabolism and Disposition August 1, 2007, 35 (8) 1341-1349; DOI: https://doi.org/10.1124/dmd.106.013953

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Central Nervous System Pharmacokinetics of the Mdr1 P-Glycoprotein Substrate CP-615,003: Intersite Differences and Implications for Human Receptor Occupancy Projections from Cerebrospinal Fluid Exposures

Karthik Venkatakrishnan, Elaine Tseng, Frederick R. Nelson, Hans Rollema, Jonathan L. French, Irina V. Kaplan, Weldon E. Horner and Megan A. Gibbs
Drug Metabolism and Disposition August 1, 2007, 35 (8) 1341-1349; DOI: https://doi.org/10.1124/dmd.106.013953
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Warfarin PBPK Model with TMDD Mechanism
  • Identification of payload-containing catabolites of ADCs
  • PK Interactions of Licorice with Cytochrome P450s
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics