Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Bosentan Is a Substrate of Human OATP1B1 and OATP1B3: Inhibition of Hepatic Uptake as the Common Mechanism of Its Interactions with Cyclosporin A, Rifampicin, and Sildenafil

Alexander Treiber, Ralph Schneiter, Stephanie Häusler and Bruno Stieger
Drug Metabolism and Disposition August 2007, 35 (8) 1400-1407; DOI: https://doi.org/10.1124/dmd.106.013615
Alexander Treiber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ralph Schneiter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephanie Häusler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bruno Stieger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The elimination process of the endothelin receptor antagonist bosentan (Tracleer) in humans is entirely dependent on metabolism mediated by two cytochrome P450 (P450) enzymes, i.e., CYP3A4 and CYP2C9. Most interactions with concomitantly administered drugs can be rationalized in terms of inhibition of these P450 enzymes. The increased bosentan concentrations observed in the presence of cyclosporin A, rifampicin, or sildenafil, however, are incompatible with this paradigm and prompted the search for alternative mechanisms governing these interactions. In the present article, we identify bosentan and its active plasma metabolite, Ro 48-5033 (4-(2-hydroxy-1,1-dimethyl-ethyl)-N-[6-(2-hydroxy-ethoxy)-5-(2-methoxy-phenoxy)-[2,2′]bipyrimidinyl-4-yl]-benzenesulfonamide), as substrates of the human organic anion transporting polypeptides (OATP) OATP1B1 and OATP1B3. Bosentan uptake into Chinese hamster ovary cells expressing these OATP transporters was efficiently inhibited by cyclosporin A and rifampicin with IC50 values significantly below their effective plasma concentrations in humans. The phosphodiesterase-5 inhibitor sildenafil was also shown to interfere with OATP-mediated transport, however, at concentrations above those achieved in therapeutic use. Therefore, inhibition of bosentan hepatic uptake may represent an alternative/complementary mechanism to rationalize some of the pharmacokinetic interactions seen in therapeutic use. A similar picture has been drawn for drugs like pitavastatin and fexofenadine, drugs that are mainly excreted in unchanged form. Bosentan elimination, in contrast, is entirely dependent on metabolism. Therefore, the described interactions with rifampicin, cyclosporin A, and, to a lesser extent, sildenafil represent evidence that inhibition of hepatic uptake may become the rate-limiting step in the overall elimination process even for drugs whose elimination is entirely dependent on metabolism.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.106.013615.

  • ABBREVIATIONS: Ro 48-5033, 4-(2-hydroxy-1,1-dimethyl-ethyl)-N-[6-(2-hydroxy-ethoxy)-5-(2-methoxy-phenoxy)-[2,2′]bipyrimidinyl-4-yl]-benzenesulfonamide; Ro 47-8634, 4-tert-butyl-N-[6-(2-hydroxy-ethoxy)-5-(2-hydroxy-phenoxy)-[2,2′]bipyrimidinyl-4-yl]-benzenesulfonamide; Ro 64-1056, 4-(2-hydroxy-1,1-dimethyl-ethyl)-N-[6-(2-hydroxy-ethoxy)-5-(2-hydroxy-phenoxy)-[2,2′]bipyrimidinyl-4-yl]-benzenesulfonamide; PAH, pulmonary arterial hypertension; OATP, organic anion transporting polypeptide(s); CHO, Chinese hamster ovary; E3S, estrone-3-sulfate; DHEAS, dehydroepiandrosterone sulfate; E17βG, estradiol-17β-glucuronide; P450, cytochrome P450.

    • Received November 2, 2006.
    • Accepted May 9, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 35 (8)
Drug Metabolism and Disposition
Vol. 35, Issue 8
1 Aug 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Bosentan Is a Substrate of Human OATP1B1 and OATP1B3: Inhibition of Hepatic Uptake as the Common Mechanism of Its Interactions with Cyclosporin A, Rifampicin, and Sildenafil
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Bosentan Is a Substrate of Human OATP1B1 and OATP1B3: Inhibition of Hepatic Uptake as the Common Mechanism of Its Interactions with Cyclosporin A, Rifampicin, and Sildenafil

Alexander Treiber, Ralph Schneiter, Stephanie Häusler and Bruno Stieger
Drug Metabolism and Disposition August 1, 2007, 35 (8) 1400-1407; DOI: https://doi.org/10.1124/dmd.106.013615

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Bosentan Is a Substrate of Human OATP1B1 and OATP1B3: Inhibition of Hepatic Uptake as the Common Mechanism of Its Interactions with Cyclosporin A, Rifampicin, and Sildenafil

Alexander Treiber, Ralph Schneiter, Stephanie Häusler and Bruno Stieger
Drug Metabolism and Disposition August 1, 2007, 35 (8) 1400-1407; DOI: https://doi.org/10.1124/dmd.106.013615
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A PBPK model for CBD in adults and children
  • Antibiotics Induce Changes in the Expression of Rat DPGs
  • Metabolism of Efavirenz by P450s and UGTs in the Brain
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics