Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Hepatic UDP-Glucuronosyltransferases Responsible for Glucuronidation of Thyroxine in Humans

Yoshihisa Kato, Shin-ichi Ikushiro, Yoshikazu Emi, Sekihiro Tamaki, Hiroshi Suzuki, Toshiyuki Sakaki, Shizuo Yamada and Masakuni Degawa
Drug Metabolism and Disposition January 2008, 36 (1) 51-55; DOI: https://doi.org/10.1124/dmd.107.018184
Yoshihisa Kato
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shin-ichi Ikushiro
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yoshikazu Emi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sekihiro Tamaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroshi Suzuki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Toshiyuki Sakaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shizuo Yamada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masakuni Degawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To clarify the UDP-glucuronosyltransferase (UGT) isoform(s) responsible for the glucuronidation of the thyroid hormone thyroxine (T4) in the human liver, the T4 glucuronidation activities of recombinant human UGT isoforms and microsomes from seven individual human livers were comparatively examined. Among the 12 recombinant human UGT1A and UGT2B subfamily enzymes examined, UGT1A1, UGT1A3, UGT1A9, and UGT1A10 showed definite activities for T4 glucuronidation. These UGT1A enzymes, with the exception of UGT1A10, were detected in all of the human liver microsomes examined. Interindividual differences in T4 glucuronidation activity were observed among the microsomes from the seven individual human livers, and the T4 glucuronidation activity was closely correlated with β-estradiol 3-glucuronidation activity. Furthermore, Spearman correlation analysis for a relationship between the T4 glucuronidation activity and the level of UGT1A1, UGT1A3, and UGT1A9 in the microsomes revealed that levels of UGT1A1 and UGT1A3, but not that of UGT1A9, were closely correlated with T4 glucuronidation activity. T4 glucuronidation activity in human liver microsomes was strongly inhibited by 26,26,26,27,27,27-hexafluoro-1α,23(S),25-trihydroxyvitamin D3 (an inhibitor of UGT1A3), moderately inhibited by either bilirubin (an inhibitor of UGT1A1) or β-estradiol (an inhibitor of UGT1A1 and UGT1A9), but not inhibited by propofol (an inhibitor of UGT1A9). These findings indicated strongly that glucuronidation of T4 in the human liver was mediated by UGT1A subfamily enzymes, especially UGT1Al and UGT1A3, and further suggested that the interindividual differences would come from differences in the expression levels of UGT1A1 and UGT1A3 in individual human livers.

Footnotes

  • This work was supported in part by Grant-in-Aid for Scientific Research (C) 18510061 (Y.K.) and Grant-in-Aid for Scientific Research (B) 19310042 (Y.K.) from the Japan Society for the Promotion of Science and by Health and Labour Sciences Research Grants for Research on Risk of Chemical Substances from the Ministry of Health, Labour and Welfare of Japan.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.107.018184.

  • ABBREVIATIONS: T4, thyroxine; UGT, UDP-glucuronosyltransferase; ST232, 26,26,26,27,27,27-hexafluoro-1α,23(S),25-trihydroxyvitamin D3; PAGE, polyacrylamide gel electrophoresis; MBP, maltose binding protein.

    • Received August 9, 2007.
    • Accepted September 27, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (1)
Drug Metabolism and Disposition
Vol. 36, Issue 1
1 Jan 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Hepatic UDP-Glucuronosyltransferases Responsible for Glucuronidation of Thyroxine in Humans
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Hepatic UDP-Glucuronosyltransferases Responsible for Glucuronidation of Thyroxine in Humans

Yoshihisa Kato, Shin-ichi Ikushiro, Yoshikazu Emi, Sekihiro Tamaki, Hiroshi Suzuki, Toshiyuki Sakaki, Shizuo Yamada and Masakuni Degawa
Drug Metabolism and Disposition January 1, 2008, 36 (1) 51-55; DOI: https://doi.org/10.1124/dmd.107.018184

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Hepatic UDP-Glucuronosyltransferases Responsible for Glucuronidation of Thyroxine in Humans

Yoshihisa Kato, Shin-ichi Ikushiro, Yoshikazu Emi, Sekihiro Tamaki, Hiroshi Suzuki, Toshiyuki Sakaki, Shizuo Yamada and Masakuni Degawa
Drug Metabolism and Disposition January 1, 2008, 36 (1) 51-55; DOI: https://doi.org/10.1124/dmd.107.018184
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Identification of payload-containing catabolites of ADCs
  • PK Interactions of Licorice with Cytochrome P450s
  • Biotransformation of Trastuzumab and Pertuzumab
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics