Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleARTICLES

Role of Vitamin D Receptor in the Lithocholic Acid-Mediated CYP3A Induction in Vitro and in Vivo

Tsutomu Matsubara, Kouichi Yoshinari, Kazunobu Aoyama, Mika Sugawara, Yuji Sekiya, Kiyoshi Nagata and Yasushi Yamazoe
Drug Metabolism and Disposition October 2008, 36 (10) 2058-2063; DOI: https://doi.org/10.1124/dmd.108.021501
Tsutomu Matsubara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kouichi Yoshinari
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kazunobu Aoyama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mika Sugawara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuji Sekiya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kiyoshi Nagata
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yasushi Yamazoe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Lipophilic bile acids are suggested to be involved in the endogenous expression of CYP3A4 in human and experimental animals as ligands of nuclear receptors. To verify the nuclear receptor specificity, the bile acid-mediated induction of CYP3A4 has been studied in vitro and in vivo in the present study. Lithocholic acid (LCA) strongly enhanced the activities of the CYP3A4 reporter gene, which contained multiple nuclear receptor binding elements, in both HepG2 and LS174T cells. The introduction of small interfering RNA for human vitamin D receptor (VDR), but not for human pregnane X receptor, reduced the LCA-induced activation of the reporter gene in these cells, suggesting the major role of VDR in the LCA induction of CYP3A4. Consistently, oral administration of LCA (100 mg/kg/day for 3 days) increased Cyp3a protein levels in the intestine but not in the liver, where a negligible level of VDR mRNA is detected. The selective role of VDR was tested in mice with the adenoviral overexpression of the receptor. Oral administration of LCA had no clear influence on the CYP3A4 reporter activity in the liver of control mice. In mice with the adenovirally expressed VDR, LCA treatment (100 or 400 mg/kg/day for 3 days) resulted in the enhanced reporter activities and increased levels of Cyp3a proteins in the liver. These results indicate the selective involvement of VDR, but not pregnane X receptor, in the LCA-mediated induction of both human and mouse CYP3As in vivo.

Footnotes

  • This study was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Sciences and Technology, the Ministry of Health, Labor, and Welfare of Japan and Comprehensive Research and Education Center for Planning of Drug Development and Clinical Education, Tohoku University 21st Century “Center of Excellence” Program.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.108.021501.

  • ABBREVIATIONS: RIF, rifampicin; PXR, pregnane X receptor; VDR, vitamin D receptor; RXR, retinoid X receptor; FXR, farnesoid X receptor; CA, cholic acid; CDCA, chenodeoxycholic acid; LCA, lithocholic acid; UDCA, ursodeoxycholic acid; h, human; siRNA, small interfering RNA; VD3, 1α,25-dihydroxyvitamin D3; PCR, polymerase chain reaction; TCID50, 50% titer culture infectious dose; MOI, multiplicity of infection; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; DMSO, dimethyl sulfoxide.

  • ↵1 Current affiliation: Tohoku Pharmaceutical University, Sendai, Miyagi, Japan.

    • Received March 14, 2008.
    • Accepted July 18, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (10)
Drug Metabolism and Disposition
Vol. 36, Issue 10
1 Oct 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of Vitamin D Receptor in the Lithocholic Acid-Mediated CYP3A Induction in Vitro and in Vivo
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleARTICLES

Role of Vitamin D Receptor in the Lithocholic Acid-Mediated CYP3A Induction in Vitro and in Vivo

Tsutomu Matsubara, Kouichi Yoshinari, Kazunobu Aoyama, Mika Sugawara, Yuji Sekiya, Kiyoshi Nagata and Yasushi Yamazoe
Drug Metabolism and Disposition October 1, 2008, 36 (10) 2058-2063; DOI: https://doi.org/10.1124/dmd.108.021501

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleARTICLES

Role of Vitamin D Receptor in the Lithocholic Acid-Mediated CYP3A Induction in Vitro and in Vivo

Tsutomu Matsubara, Kouichi Yoshinari, Kazunobu Aoyama, Mika Sugawara, Yuji Sekiya, Kiyoshi Nagata and Yasushi Yamazoe
Drug Metabolism and Disposition October 1, 2008, 36 (10) 2058-2063; DOI: https://doi.org/10.1124/dmd.108.021501
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

ARTICLES

  • BMS-823778 Pharmacokinetics, Impact of Genetic Polymorphism
  • AZD7325 Metabolites Involving Cyclization and Aromatization
  • Bacterial Outer Membrane Vesicles Regulate Intestinal UGT1A1
Show more ARTICLES

Article

  • BMS-823778 Pharmacokinetics, Impact of Genetic Polymorphism
  • AZD7325 Metabolites Involving Cyclization and Aromatization
  • Bacterial Outer Membrane Vesicles Regulate Intestinal UGT1A1
Show more Article

Articles

  • BMS-823778 Pharmacokinetics, Impact of Genetic Polymorphism
  • AZD7325 Metabolites Involving Cyclization and Aromatization
  • Bacterial Outer Membrane Vesicles Regulate Intestinal UGT1A1
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics