Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Metabolism, Pharmacokinetics, and Excretion of a Cholesteryl Ester Transfer Protein Inhibitor, Torcetrapib, in Rats, Monkeys, and Mice: Characterization of Unusual and Novel Metabolites by High-Resolution Liquid Chromatography-Tandem Mass Spectrometry and 1H Nuclear Magnetic Resonance

Chandra Prakash, Weichao Chen, Michelle Rossulek, Kim Johnson, Chenghong Zhang, Thomas O'Connell, Michael Potchoiba and Deepak Dalvie
Drug Metabolism and Disposition October 2008, 36 (10) 2064-2079; DOI: https://doi.org/10.1124/dmd.108.022277
Chandra Prakash
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Weichao Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michelle Rossulek
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kim Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chenghong Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas O'Connell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Potchoiba
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Deepak Dalvie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The disposition of torcetrapib {(–)-[2R,4S] 4-[(3,5-bis-trifluoromethylbenzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester}, a cholesteryl ester transfer protein inhibitor, was studied in rats, monkeys, and mice after oral administration of a single dose of [14C]torcetrapib. Total mean recoveries of the radiocarbon were 90.9, 93.4, and 86.8% from mice, rats, and monkeys, respectively. Excretion of radioactivity was rapid and nearly complete within 48 h after dosing, with a majority excreted in the feces in all species. Torcetrapib was not detected in the urine and/or bile across species, suggesting that it is primarily cleared by metabolism in these species. More than 28 metabolites were identified in all species and were products of oxidation and conjugation pathways. The primary metabolic pathways of torcetrapib involved hydrolysis of the carbamate ester (M2) and the oxidation of the ethyl moieties. M2 was subsequently metabolized in parallel by oxidative cleavage to novel and unusual quinoline metabolites (M3, M4, M5, M9, and M17), M1 (bis trifluoromethyl benzoic acid), and M28 [3,5-bis(trifluoromethyl)phenyl-(methoxycarbonyl)methanesulfonic acid]. The structures of several metabolites were established by high-resolution liquid chromatography-tandem mass spectrometry and 1H NMR. The major circulating and excretory metabolites in mice, rats and monkeys were species-dependent; however, several common metabolites were observed in more than one species. In addition to parent torcetrapib, M1, M3, and M4 in rats, M4 and M17 in mice, and M3 and M8 in monkeys were detected as the major circulating metabolites. A mechanism for the formation of an unusual metabolite M28 has been proposed.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.108.022277.

  • ABBREVIATIONS: LDL-C, low-density lipoprotein-cholesterol; CHD, coronary artery disease; HDL-C, high-density lipoprotein-cholesterol; CETP, cholesteryl ester transfer protein; torcetrapib, (–)-[2R,4S] 4-[(3,5-bis-trifluoromethylbenzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester; SD, Sprague-Dawley; HPLC, high-performance liquid chromatography; LC, liquid chromatography; MS, mass spectrometry; MS/MS, tandem mass spectrometry; β-RAM, radioactive monitor; AUC, area(s) under the curve; BTFMBA, bis-trifluoromethylbenzoic acid; CID, collision-induced dissociation.

  • ↵1 Current affiliation: Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, MA.

    • Received May 9, 2008.
    • Accepted July 21, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (10)
Drug Metabolism and Disposition
Vol. 36, Issue 10
1 Oct 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolism, Pharmacokinetics, and Excretion of a Cholesteryl Ester Transfer Protein Inhibitor, Torcetrapib, in Rats, Monkeys, and Mice: Characterization of Unusual and Novel Metabolites by High-Resolution Liquid Chromatography-Tandem Mass Spectrometry an…
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Metabolism, Pharmacokinetics, and Excretion of a Cholesteryl Ester Transfer Protein Inhibitor, Torcetrapib, in Rats, Monkeys, and Mice: Characterization of Unusual and Novel Metabolites by High-Resolution Liquid Chromatography-Tandem Mass Spectrometry and 1H Nuclear Magnetic Resonance

Chandra Prakash, Weichao Chen, Michelle Rossulek, Kim Johnson, Chenghong Zhang, Thomas O'Connell, Michael Potchoiba and Deepak Dalvie
Drug Metabolism and Disposition October 1, 2008, 36 (10) 2064-2079; DOI: https://doi.org/10.1124/dmd.108.022277

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Metabolism, Pharmacokinetics, and Excretion of a Cholesteryl Ester Transfer Protein Inhibitor, Torcetrapib, in Rats, Monkeys, and Mice: Characterization of Unusual and Novel Metabolites by High-Resolution Liquid Chromatography-Tandem Mass Spectrometry and 1H Nuclear Magnetic Resonance

Chandra Prakash, Weichao Chen, Michelle Rossulek, Kim Johnson, Chenghong Zhang, Thomas O'Connell, Michael Potchoiba and Deepak Dalvie
Drug Metabolism and Disposition October 1, 2008, 36 (10) 2064-2079; DOI: https://doi.org/10.1124/dmd.108.022277
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • BSEP Function in Suspension Hepatocytes
  • Candesartan glucuronide serves as a CYP2C8 inhibitor
  • Role of AADAC on eslicarbazepine acetate hydrolysis
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics