Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

The Effects of Dose and Route on the Toxicokinetics and Disposition of 1-Butyl-3-methylimidazolium Chloride in Male F-344 Rats and Female B6C3F1 Mice

I. G. Sipes, G. A. Knudsen and R. K. Kuester
Drug Metabolism and Disposition February 2008, 36 (2) 284-293; DOI: https://doi.org/10.1124/dmd.107.018515
I. G. Sipes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. A. Knudsen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. K. Kuester
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

These studies characterize the effect of dose and route of administration on the disposition and elimination of the ionic liquid, 1-butyl-3-methylimidazolium chloride (Bmim-Cl). After i.v. (5 mg/kg) or oral (50 mg/kg) administration to male F-344 rats [14C]Bmim-Cl detected in blood decreased rapidly. Clearance rates from the blood after i.v. and oral administration were similar (7.4 and 11.9 ml/min, respectively). Systemic bioavailability was determined to be 62.1% of a 50 mg/kg dose in rats. Urinary excretion of the parent compound by rats was the major route of elimination (i.v.: 91% in 24 h; oral: 55–74% in 24 h). The rates and routes of elimination were not affected by escalation of dose (0.5–50 mg/kg) or repeated oral administration (five daily administrations, 50 mg/kg) and were similar in male rats and B6C3F1 female mice (86–95% of dose eliminated in 24 h). Apparent systemic exposure to Bmim-Cl after dermal administration was dependent upon vehicle, as assessed by the percentage of dose eliminated in urine after application in a particular vehicle (water: 1%; ethanol/water: 3%; and dimethylformamide/water: 13% of dose). Regardless of gender, species, dose, route, or number of exposures, high-pressure liquid chromatography-UV/visible-radiometric analyses of urine samples showed a single peak that coeluted with the Bmim-Cl standard. These studies illustrate that systemic bioavailability of Bmim-Cl is high, tissue disposition and metabolism are negligible, and absorbed compound is extensively extracted by the kidney and eliminated in the urine as the parent compound.

Footnotes

  • This research was supported by the National Toxicology Program/National Institute Environmental Health Science (NIEHS) Contract N01-ES-45529. The authors acknowledge the support of the analytical core of the NIEHS-funded Southwest Environmental Health Science Center (P30-ES 06694) and National Cancer Institute Grant (CA023074).

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.107.018515.

  • ABBREVIATIONS: IL, ionic liquid; Bmim-Cl, 1-butyl-3-methylimidazolium chloride; HPLC, high-pressure liquid chromatography; DMF, dimethylformamide; JVC, jugular vein cannula; LC, liquid chromatography; MS, mass spectrometry; UV/Vis, UV-visible; AUC[0–∞], concentration-time curve from time zero to infinity; LOQ, limit of quantification; OCT, organic cation transporters.

    • Received August 27, 2007.
    • Accepted October 25, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (2)
Drug Metabolism and Disposition
Vol. 36, Issue 2
1 Feb 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Effects of Dose and Route on the Toxicokinetics and Disposition of 1-Butyl-3-methylimidazolium Chloride in Male F-344 Rats and Female B6C3F1 Mice
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Effects of Dose and Route on the Toxicokinetics and Disposition of 1-Butyl-3-methylimidazolium Chloride in Male F-344 Rats and Female B6C3F1 Mice

I. G. Sipes, G. A. Knudsen and R. K. Kuester
Drug Metabolism and Disposition February 1, 2008, 36 (2) 284-293; DOI: https://doi.org/10.1124/dmd.107.018515

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

The Effects of Dose and Route on the Toxicokinetics and Disposition of 1-Butyl-3-methylimidazolium Chloride in Male F-344 Rats and Female B6C3F1 Mice

I. G. Sipes, G. A. Knudsen and R. K. Kuester
Drug Metabolism and Disposition February 1, 2008, 36 (2) 284-293; DOI: https://doi.org/10.1124/dmd.107.018515
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Clearance pathways: fevipiprant with probenecid perpetrator
  • Predicting Volume of Distribution from In Vitro Parameters
  • In Vivo Functional Effects of CYP2C9 M1L
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics