Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Product Inhibition of UDP-Glucuronosyltransferase (UGT) Enzymes by UDP Obfuscates the Inhibitory Effects of UGT Substrates

Ryoichi Fujiwara, Miki Nakajima, Hiroyuki Yamanaka, Miki Katoh and Tsuyoshi Yokoi
Drug Metabolism and Disposition February 2008, 36 (2) 361-367; DOI: https://doi.org/10.1124/dmd.107.018705
Ryoichi Fujiwara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Miki Nakajima
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroyuki Yamanaka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Miki Katoh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tsuyoshi Yokoi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Substrates that are specific for certain UDP-glucuronosyltransferase (UGT) isoforms are usually used as specific inhibitors to identify UGT isoforms responsible for the glucuronidation of drugs. 1-Naphthol and 4-nitrophenol are probe substrates for human UGT1A6. In the present study, we found that UGT1A1-catalyzed estradiol 3-O-glucuronide formation and UGT1A4-catalyzed imipramine N-glucuronide formation in human liver microsomes were prominently decreased in the presence of 1-naphthol, but those by recombinant human UGT1A1 and UGT1A4, respectively, were not. Interestingly, when recombinant UGT1A6 was added in the reaction mixture, these activities by recombinant UGT1A1 and UGT1A4 were diminished in the presence of 1-naphthol. To interpret this phenomenon, the inhibitory effects of 1-naphthol O-glucuronide and UDP, products of the glucuronidation of 1-naphthol, were investigated. We found that UDP strongly inhibited the UGT1A1 (Ki = 7 μM) and UGT1A4 (Ki = 47 μM) activities in a competitive manner for the 5′-diphosphoglucuronic acid binding. These results suggest that UDP produced by UGT1A6-catalyzed 1-naphthol glucuronidation, but not 1-naphthol O-glucuronide and 1-naphthol per se, is the actual inhibition substance. Next, we examined the inhibitory effects of 15 compounds that are substrates of UGTs on estradiol 3-O-glucuronide formation in human liver microsomes compared with those by recombinant UGT1A1. Among them, 4 compounds (1-naphthol, 2-naphthol, 4-nitrophenol, and 4-methylumbelliferone) with high turnover rates (Vmax/Km value >200 μl/min/mg) showed more potent inhibition of the activity in human liver microsomes compared with that by the recombinant UGT1A1. Thus, we should pay attention to the inhibitory effects of UDP on UGT, which may cause erroneous evaluations in inhibition studies using human liver microsomes.

Footnotes

  • H.Y. was supported as a Research Fellow of the Japan Society for the Promotion of Science.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.107.018705.

  • ABBREVIATIONS: UGT, UDP-glucuronosyltransferase; HPLC, high performance liquid chromatography; UDPGA, UDP-glucuronic acid; SN-38, 7-ethyl-10-hydroxycamptothecin; HLM, human liver microsome.

    • Received September 2, 2007.
    • Accepted November 9, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (2)
Drug Metabolism and Disposition
Vol. 36, Issue 2
1 Feb 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Product Inhibition of UDP-Glucuronosyltransferase (UGT) Enzymes by UDP Obfuscates the Inhibitory Effects of UGT Substrates
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Product Inhibition of UDP-Glucuronosyltransferase (UGT) Enzymes by UDP Obfuscates the Inhibitory Effects of UGT Substrates

Ryoichi Fujiwara, Miki Nakajima, Hiroyuki Yamanaka, Miki Katoh and Tsuyoshi Yokoi
Drug Metabolism and Disposition February 1, 2008, 36 (2) 361-367; DOI: https://doi.org/10.1124/dmd.107.018705

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Product Inhibition of UDP-Glucuronosyltransferase (UGT) Enzymes by UDP Obfuscates the Inhibitory Effects of UGT Substrates

Ryoichi Fujiwara, Miki Nakajima, Hiroyuki Yamanaka, Miki Katoh and Tsuyoshi Yokoi
Drug Metabolism and Disposition February 1, 2008, 36 (2) 361-367; DOI: https://doi.org/10.1124/dmd.107.018705
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Identification of payload-containing catabolites of ADCs
  • PK Interactions of Licorice with Cytochrome P450s
  • Biotransformation of Trastuzumab and Pertuzumab
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics