Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Kinetic Identification of Membrane Transporters That Assist P-glycoprotein-Mediated Transport of Digoxin and Loperamide through a Confluent Monolayer of MDCKII-hMDR1 Cells

Poulomi Acharya, Michael P. O'Connor, Joseph W. Polli, Andrew Ayrton, Harma Ellens and Joe Bentz
Drug Metabolism and Disposition February 2008, 36 (2) 452-460; DOI: https://doi.org/10.1124/dmd.107.017301
Poulomi Acharya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael P. O'Connor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph W. Polli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew Ayrton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Harma Ellens
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joe Bentz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A robust screen for compound interaction with P-glycoprotein (P-gp) has some obvious requirements, such as a cell line expressing P-gp and a probe substrate that is transported solely by P-gp and passive permeability. It is actually difficult to prove that a particular probe substrate interacts only with P-gp in the chosen cell line. Using a confluent monolayer of MDCKII-hMDR1 cells, we have determined the elementary rate constants for the P-gp efflux of amprenavir, digoxin, loperamide, and quinidine. For amprenavir and quinidine, transport was fitted with just P-gp and passive permeability. For digoxin and loperamide, fitting required a basolateral transporter (p < 0.01), which was inhibited by the P-gp inhibitor N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918). This means that when digoxin is used as a probe substrate and a compound is shown to inhibit digoxin flux, it could be that the inhibition occurs at the basolateral transporter rather than at P-gp. Digoxin basolateral>apical efflux also required an apical importer (p < 0.05). We propose that amprenavir and quinidine are robust probe substrates for assessing P-gp interactions using the MDCKII-hMDR1 confluent cell monolayer. Usage of another cell line, e.g., LLC-hMDR1 or Caco-2, would require the same kinetic validation to ensure that the probe substrate interacts only with P-gp. Attempts to identify the additional digoxin and loperamide transporters using a wide range of substrates/inhibitors of known epithelial transporters (organic cation transporters, organic anion transporters, organic ion-transporting polypeptide, uric acid transporter, or multidrug resistance-associated protein) failed to inhibit the digoxin or loperamide transport through their basolateral transporter.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.107.017301.

  • ABBREVIATIONS: P-gp, the P-glycoprotein product of the hMDR1 gene; MDCKII-hMDR1, Madin-Darby canine kidney II cell line that overexpresses human multidrug resistance 1; bcrp/BRCP, breast cancer resistance protein; GF120918, N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide; DMEM, Dulbecco's modified Eagle's medium; A>B (or B> transport across the confluent cell monolayer when the donor chamber is apical (or basolateral) and the receiver chamber is basolateral (or apical); TM, transport medium; BT, basolateral transporter; AT, apical transporter; RMS, root-mean-square; OAT, organic anion transporters; OATP, organic ion-transporting polypeptide; OCT, organic cation transporters; MRP, multidrug resistance-associated protein.

    • Received June 29, 2007.
    • Accepted October 23, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (2)
Drug Metabolism and Disposition
Vol. 36, Issue 2
1 Feb 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Kinetic Identification of Membrane Transporters That Assist P-glycoprotein-Mediated Transport of Digoxin and Loperamide through a Confluent Monolayer of MDCKII-hMDR1 Cells
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Kinetic Identification of Membrane Transporters That Assist P-glycoprotein-Mediated Transport of Digoxin and Loperamide through a Confluent Monolayer of MDCKII-hMDR1 Cells

Poulomi Acharya, Michael P. O'Connor, Joseph W. Polli, Andrew Ayrton, Harma Ellens and Joe Bentz
Drug Metabolism and Disposition February 1, 2008, 36 (2) 452-460; DOI: https://doi.org/10.1124/dmd.107.017301

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Kinetic Identification of Membrane Transporters That Assist P-glycoprotein-Mediated Transport of Digoxin and Loperamide through a Confluent Monolayer of MDCKII-hMDR1 Cells

Poulomi Acharya, Michael P. O'Connor, Joseph W. Polli, Andrew Ayrton, Harma Ellens and Joe Bentz
Drug Metabolism and Disposition February 1, 2008, 36 (2) 452-460; DOI: https://doi.org/10.1124/dmd.107.017301
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Humanized PXR-CAR-CYP3A4/7 Mouse as Model of Induction
  • Ozanimod Human Metabolism and Disposition
  • High-Throughput Characterization of SLCO1B1 VUS
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics