Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Impact of Basolateral Multidrug Resistance-Associated Protein (Mrp) 3 and Mrp4 on the Hepatobiliary Disposition of Fexofenadine in Perfused Mouse Livers

Xianbin Tian, Brandon Swift, Maciej J. Zamek-Gliszczynski, Martin G. Belinsky, Gary D. Kruh and Kim L. R. Brouwer
Drug Metabolism and Disposition May 2008, 36 (5) 911-915; DOI: https://doi.org/10.1124/dmd.107.019273
Xianbin Tian
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brandon Swift
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maciej J. Zamek-Gliszczynski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin G. Belinsky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gary D. Kruh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kim L. R. Brouwer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The disposition of fexofenadine, a commonly used antihistamine drug, is governed primarily by active transport. Biliary excretion of the parent compound is the major route of systemic clearance. Previous studies demonstrated that fexofenadine hepatic uptake is mediated by organic anion transporting polypeptides. Recently, we showed that in mice fexofenadine is excreted into bile primarily by multidrug resistance-associated protein (Mrp) 2 (Abcc2). In the present study, the roles of Mrp3 (Abcc3) and Mrp4 (Abcc4) in the hepatobiliary disposition of fexofenadine were examined in knockout mice using in situ liver perfusion. Compared with that in wild-type mice, basolateral excretion of fexofenadine was impaired, resulting in a ∼50% decrease in perfusate recovery in Abcc3-/- mice; in contrast, fexofenadine hepatobiliary disposition was unaltered in Abcc4-/- mice. As expected, in Abcc2-/- mice, fexofenadine was redirected from the canalicular to the basolateral membrane for excretion. In Abcc2-/-/Abcc3-/- double-knockout mice, fexofenadine biliary excretion was impaired, but perfusate recovery was similar to that in wild-type mice and more than 2-fold higher than that in Abcc3-/- mice, presumably due to compensatory basolateral transport mechanism(s). These results demonstrate that multiple transport proteins are involved in the hepatobiliary disposition of fexofenadine. In addition to Mrp2 and Mrp3, other transport proteins play an important role in the biliary and hepatic basolateral excretion of this zwitterionic drug.

Footnotes

  • This work was supported by the National Institutes of Health (GM41935 to K.L.R.B. and CA73728 to G.D.K.) and by the National Cancer Institute (Core Grant CA06927 to Fox Chase Cancer Center).

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.107.019273.

  • ABBREVIATIONS: Oatp, organic anion transporting polypeptide; Mrp/MRP, multidrug resistance-associated protein; Abcc2-/-, Mrp2 gene knockout; Abcc3-/-, Mrp3 gene knockout; Abcc2-/-/Abcc3-/-, Mrp2 and Mrp3 double-knockout; WT, wild-type C57BL/6; Abcc4-/-, Mrp4 gene knockout.

  • ↵1 Current affiliation: Wyeth, Discovery Pharmacokinetics, Andover, MA.

  • ↵2 Current affiliation: Eli Lilly and Company, Drug Disposition, Indianapolis, IN.

  • ↵3 Current affiliation: Department of Medicine, University of Illinois at Chicago, Chicago, IL.

    • Received October 15, 2007.
    • Accepted February 12, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (5)
Drug Metabolism and Disposition
Vol. 36, Issue 5
1 May 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Impact of Basolateral Multidrug Resistance-Associated Protein (Mrp) 3 and Mrp4 on the Hepatobiliary Disposition of Fexofenadine in Perfused Mouse Livers
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Impact of Basolateral Multidrug Resistance-Associated Protein (Mrp) 3 and Mrp4 on the Hepatobiliary Disposition of Fexofenadine in Perfused Mouse Livers

Xianbin Tian, Brandon Swift, Maciej J. Zamek-Gliszczynski, Martin G. Belinsky, Gary D. Kruh and Kim L. R. Brouwer
Drug Metabolism and Disposition May 1, 2008, 36 (5) 911-915; DOI: https://doi.org/10.1124/dmd.107.019273

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Impact of Basolateral Multidrug Resistance-Associated Protein (Mrp) 3 and Mrp4 on the Hepatobiliary Disposition of Fexofenadine in Perfused Mouse Livers

Xianbin Tian, Brandon Swift, Maciej J. Zamek-Gliszczynski, Martin G. Belinsky, Gary D. Kruh and Kim L. R. Brouwer
Drug Metabolism and Disposition May 1, 2008, 36 (5) 911-915; DOI: https://doi.org/10.1124/dmd.107.019273
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Improved CYP Reaction Phenotyping
  • Multiple-Concentration Chemical Inhibition Design
  • New Dog P450 3A98 in Gut
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics