Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Slipping Past UGT1A1 and Multidrug Resistance-Associated Protein 2 in the Liver: Effects of Steric Compression and Hydrogen Bonding on the Hepatobiliary Elimination of Synthetic Bilirubins

Antony F. McDonagh, Stefan E. Boiadjiev and David A. Lightner
Drug Metabolism and Disposition May 2008, 36 (5) 930-936; DOI: https://doi.org/10.1124/dmd.107.019778
Antony F. McDonagh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefan E. Boiadjiev
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David A. Lightner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The hepatobiliary metabolism and excretion of three isomeric bilirubin analogs with propanoic replaced by benzoic acid side-chains were studied in the rat. Despite their isomeric relationship and similar constitutions, the three analogs were metabolized quite differently from each other and from bilirubin. In the di-o-benzoic compound, steric hindrance involving the phenyl groups reinforces intramolecular hydrogen bonding of the two carboxyl groups. This compound is considerably less polar than bilirubin on reverse-phase high-performance liquid chromatography and, like bilirubin, was not excreted in bile in UGT1-deficient (Gunn) rats. But, quite unlike bilirubin, it was not glucuronidated or excreted in bile in normal rats. In contrast to both bilirubin and the di-o-benzoic isomer, the more polar m- and p-isomers, in which intramolecular hydrogen bonding of carboxyl groups is sterically difficult, were excreted rapidly in bile in unchanged form in both normal and Gunn rats. However, only one of them, the di-m-isomer, was excreted rapidly and unchanged in bile in rats (TR- rats) congenitally deficient in the canalicular ATP-binding cassette transporter Mrp2. The marked differences in hepatobiliary metabolism of the three isomers studied can be rationalized on the basis of their computed three-dimensional structures and minimum-energy conformations and the remote effects of steric compression on intramolecular hydrogen bonding.

Footnotes

  • This work was supported by National Institutes of Health Grants HD-17779 and DK-26307.

  • This work is dedicated to Professor Leslie Z. Benet on the occasion of his 70th birthday and to the memory of Professor Emeritus Rudi Schmid, who died on October 20, 2007, at the age of 85.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.107.019778.

  • ABBREVIATIONS: MRP2/Mrp2, multidrug resistance-associated protein 2; MeDocta, 0.1 M di-n-octylamine acetate in MeOH; TR-, Mrp2-deficient; HPLC, high-performance liquid chromatography.

    • Received November 27, 2007.
    • Accepted February 14, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (5)
Drug Metabolism and Disposition
Vol. 36, Issue 5
1 May 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Slipping Past UGT1A1 and Multidrug Resistance-Associated Protein 2 in the Liver: Effects of Steric Compression and Hydrogen Bonding on the Hepatobiliary Elimination of Synthetic Bilirubins
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Slipping Past UGT1A1 and Multidrug Resistance-Associated Protein 2 in the Liver: Effects of Steric Compression and Hydrogen Bonding on the Hepatobiliary Elimination of Synthetic Bilirubins

Antony F. McDonagh, Stefan E. Boiadjiev and David A. Lightner
Drug Metabolism and Disposition May 1, 2008, 36 (5) 930-936; DOI: https://doi.org/10.1124/dmd.107.019778

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Slipping Past UGT1A1 and Multidrug Resistance-Associated Protein 2 in the Liver: Effects of Steric Compression and Hydrogen Bonding on the Hepatobiliary Elimination of Synthetic Bilirubins

Antony F. McDonagh, Stefan E. Boiadjiev and David A. Lightner
Drug Metabolism and Disposition May 1, 2008, 36 (5) 930-936; DOI: https://doi.org/10.1124/dmd.107.019778
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Determination of Acyl-, O-, and N-Glucuronide
  • TMDD Affects PK of IL-10 Fc-fusion Proteins
  • Uptake as the RDS in Pevonedistat Hepatic Clearance
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics