Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Identification of Human Liver Cytochrome P450 Isoforms Involved in Autoinduced Metabolism of the Antiangiogenic Agent (Z)-5-[(1,2-Dihydro-2-oxo-3H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-propanoic Acid (TSU-68)

Ryuichi Kitamura, Hisae Asanoma, Sekio Nagayama and Masaki Otagiri
Drug Metabolism and Disposition June 2008, 36 (6) 1003-1009; DOI: https://doi.org/10.1124/dmd.107.019877
Ryuichi Kitamura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hisae Asanoma
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sekio Nagayama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masaki Otagiri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

(Z)-5-[(1,2-Dihydro-2-oxo-3H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-propanoic acid (TSU-68) is a new anticancer drug that inhibits angiogenic receptor tyrosine kinases, which play a crucial role in tumor-induced vascularization. TSU-68 undergoes hepatic oxidation and glucuronidation. Incubation of TSU-68 with human liver microsomes in the presence of NADPH resulted in the formation of three major metabolites: 5-, 6-, and 7-hydroxyindolinone derivatives. The 5-, 6-, and 7-hydroxylation followed simple Michaelis-Menten kinetics with Vmax/Km values (an indicator of intrinsic clearance) of 13, 25, and 6 μl/min/mg, respectively. Of the 10 cDNA-expressed human cytochrome P450 isoforms examined, only CYP1A1 and CYP1A2 exhibited appreciable TSU-68 hydroxylation activity. Inhibition studies with α-naphthoflavone (a selective CYP1A2 inhibitor) and anti-CYP1A2 antibody also indicated the almost exclusive role of CYP1A2 in microsomal TSU-68 hydroxylation. Treatment of human hepatocytes with 10 μM TSU-68 resulted in a 28- to 140-fold increase in CYP1A1/2-mediated ethoxyresorufin O-deethylase activity. The protein levels of CYP1A2 were increased in TSU-68-treated hepatocytes, and those of CYP1A1, which were undetectable in control hepatocytes, were also increased to detectable levels in the TSU-68-treated hepatocytes. Thus, TSU-68 was shown to induce CYP1A1/2 expression, which was responsible for its hydroxylation. The observation that TSU-68 treatment resulted in a 10- to 45-fold increase in 5-, 6-, and 7-hydroxylation directly demonstrated the autoinduced hydroxylation of TSU-68. In conclusion, TSU-68 has the potential to cause induction of its own CYP1A1/2-mediated oxidative metabolism in humans. This autoinductive effect provides a clear explanation for the clinically observed decrease in TSU-68 plasma concentrations during repeated administration of the drug.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.107.019877.

  • ABBREVIATIONS: TSU-68, SU6668, (Z)-5-[(1,2-dihydro-2-oxo-3H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-propanoic acid; P450, cytochrome P450; UGT, UDP-glucuronosyltransferase; HPLC, high-performance liquid chromatography; DMSO, dimethyl sulfoxide; LC, liquid chromatography; MS/MS, tandem mass spectrometry; MRM, multiple reaction monitoring; EROD, ethoxyresorufin O-deethylation; SU5416, [3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one]; AhR, arylhydrocarbon-receptor.

    • Received November 23, 2007.
    • Accepted March 3, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (6)
Drug Metabolism and Disposition
Vol. 36, Issue 6
1 Jun 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identification of Human Liver Cytochrome P450 Isoforms Involved in Autoinduced Metabolism of the Antiangiogenic Agent (Z)-5-[(1,2-Dihydro-2-oxo-3H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-propanoic Acid (TSU-68)
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Identification of Human Liver Cytochrome P450 Isoforms Involved in Autoinduced Metabolism of the Antiangiogenic Agent (Z)-5-[(1,2-Dihydro-2-oxo-3H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-propanoic Acid (TSU-68)

Ryuichi Kitamura, Hisae Asanoma, Sekio Nagayama and Masaki Otagiri
Drug Metabolism and Disposition June 1, 2008, 36 (6) 1003-1009; DOI: https://doi.org/10.1124/dmd.107.019877

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Identification of Human Liver Cytochrome P450 Isoforms Involved in Autoinduced Metabolism of the Antiangiogenic Agent (Z)-5-[(1,2-Dihydro-2-oxo-3H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-propanoic Acid (TSU-68)

Ryuichi Kitamura, Hisae Asanoma, Sekio Nagayama and Masaki Otagiri
Drug Metabolism and Disposition June 1, 2008, 36 (6) 1003-1009; DOI: https://doi.org/10.1124/dmd.107.019877
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Metabolic enzymes in nintedanib metabolism
  • Mechanism of AO Inactivation by Hydralazine
  • Warfarin PBPK modeling with target binding
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics