Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Hepatic Uptake and Excretion of (–)-N-{2-[(R)-3-(6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidino]ethyl}-4-fluorobenzamide (YM758), a Novel If Channel Inhibitor, in Rats and Humans

Ken-ichi Umehara, Megumi Iwai, Yasuhisa Adachi, Takafumi Iwatsubo, Takashi Usui and Hidetaka Kamimura
Drug Metabolism and Disposition June 2008, 36 (6) 1030-1038; DOI: https://doi.org/10.1124/dmd.108.020669
Ken-ichi Umehara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Megumi Iwai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yasuhisa Adachi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takafumi Iwatsubo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takashi Usui
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hidetaka Kamimura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

(–)-N-{2-[(R)-3-(6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidino]ethyl}-4-fluorobenzamide (YM758), a novel “funny” If current channel (If channel) inhibitor, is being developed as a treatment for stable angina and atrial fibrillation. The hepatic uptake/excretion of YM758 was clarified using transporter-expressing mammalian cells and hepatocytes mainly in humans and partly in rats. cDNA-expressing human embryonic kidney 293 cells were used to determine that YM758 was greatly taken up via organic anion-transporting polypeptide (OATP) 1B1 and slightly via human organic cation transporter (hOCT) 1/rat organic cation transporter 1 but not via OATP1B3. In addition, the uptake of 17β-estradiol-d-17β-glucuronide via OATP1B1 was inhibited in the presence of YM758, whereas that via OATP1B3 was not. In contrast, time-dependent uptake of YM758 into rat/human hepatocytes at 37°C was observed, as was concentration-dependent uptake into human hepatocytes (Km value of 87.9 μM). This saturable uptake of YM758 into human hepatocytes was inhibited in the presence of quinidine (an inhibitor for OATP1B1) but not cimetidine (an inhibitor for the hOCT family). Moreover, the permeation clearance ratios for the transcellular transport of YM758 across multidrug resistance (MDR) 1-expressing LLC-PK1 cells were extensively higher than those across LLC-PK1 cells, which indicate that MDR1-mediated transport is one of the possible pathways through which YM758 may be excreted into the bile. These results indicate that YM758 is taken up into hepatocytes mainly via OATP1B1, but not via hOCT1, and is excreted into the bile via MDR1 in humans; however, passive diffusion or an unknown uptake/excretion mechanism could be at work in the hepatocytes. This study is the first to clarify the saturable hepatic uptake and/or the excretion mechanism by the If channel inhibitor.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.108.020669.

  • ABBREVIATIONS: If channel, “funny” If current channel; YM758, (–)-N-{2-[(R)-3-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)-piperidino]ethyl}-4-fluorobenzamide; hOCT/rOct, human organic cation transporter/rat organic cation transporter; OATP/Oatp, organic anion-transporting polypeptide; E217βG, 17β-estradiol-d-17β-glucuronide; MDR/Mdr, multidrug resistance; MRP/Mrp, multidrug resistance-associated protein; BCRP/Bcrp, breast cancer resistance protein; MPP, 1-methyl-4-phenylpyridinium; YM-344505, deuterium-YM758 monophosphate; FBS, fetal bovine serum; DMEM, Dulbecco's modified Eagle's medium; HBSS, Hanks' balanced salt solution; PCR, polymerase chain reaction; HEK, human embryonic kidney; LLC-MDR1, MDR1-transfected LLC-PK1 cells; P450, cytochrome P450.

    • Received January 29, 2008.
    • Accepted March 5, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (6)
Drug Metabolism and Disposition
Vol. 36, Issue 6
1 Jun 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Hepatic Uptake and Excretion of (–)-N-{2-[(R)-3-(6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidino]ethyl}-4-fluorobenzamide (YM758), a Novel If Channel Inhibitor, in Rats and Humans
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Hepatic Uptake and Excretion of (–)-N-{2-[(R)-3-(6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidino]ethyl}-4-fluorobenzamide (YM758), a Novel If Channel Inhibitor, in Rats and Humans

Ken-ichi Umehara, Megumi Iwai, Yasuhisa Adachi, Takafumi Iwatsubo, Takashi Usui and Hidetaka Kamimura
Drug Metabolism and Disposition June 1, 2008, 36 (6) 1030-1038; DOI: https://doi.org/10.1124/dmd.108.020669

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Hepatic Uptake and Excretion of (–)-N-{2-[(R)-3-(6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidino]ethyl}-4-fluorobenzamide (YM758), a Novel If Channel Inhibitor, in Rats and Humans

Ken-ichi Umehara, Megumi Iwai, Yasuhisa Adachi, Takafumi Iwatsubo, Takashi Usui and Hidetaka Kamimura
Drug Metabolism and Disposition June 1, 2008, 36 (6) 1030-1038; DOI: https://doi.org/10.1124/dmd.108.020669
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Metabolic enzymes in nintedanib metabolism
  • Mechanism of AO Inactivation by Hydralazine
  • Warfarin PBPK modeling with target binding
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics