Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Comparison of Immortalized Fa2N-4 Cells and Human Hepatocytes as in Vitro Models for Cytochrome P450 Induction

Niresh Hariparsad, Brian A. Carr, Raymond Evers and Xiaoyan Chu
Drug Metabolism and Disposition June 2008, 36 (6) 1046-1055; DOI: https://doi.org/10.1124/dmd.108.020677
Niresh Hariparsad
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian A. Carr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Raymond Evers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaoyan Chu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Fa2N-4 cells have been proposed as a tool to identify CYP3A4 inducers. To evaluate whether Fa2N-4 cells are a reliable surrogate for cryopreserved human hepatocytes, we assessed the basal mRNA expression of 64 drug disposition genes in Fa2N-4 cells. Significant differences were found in the expression of major drug-metabolizing enzymes, nuclear receptors, and transporters between both cell types. Importantly, the expression of constitutive androstane receptor (CAR) and several hepatic uptake transporters was significantly lower (>50-fold) in Fa2N-4 cells, whereas the expression of pregnane X-receptor (PXR) and aryl hydrocarbon receptor (AhR) was similar between Fa2N-4 cells and human hepatocytes. By using an optimized induction assay for Fa2N-4 cells, CYP3A4 induction by rifampicin, the prototypical PXR activator, increased from 1.5- to 7-fold at the level of functional activity. With nine selected compounds, which are known inducers of CYP3A4 either via activation of PXR, CAR, or both, we evaluated CYP3A4 and CYP2B6 mRNA induction using Fa2N-4 cells and human hepatocytes. No response was observed in Fa2N-4 cells treated with the selective CAR activators 6-(4-chlorophenyl)imidazo[2,1-b][1,3]-thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime and artemisinin. CYP3A4 and CYP2B6 induction in Fa2N-4 cells were also low for phenytoin, phenobarbital, and efavirenz, which are dual activators of PXR/CAR. This finding was in agreement with the lack of expression of CAR. The EC50 value for rifampicin-mediated CYP3A4 induction was 10-fold higher than that in human hepatocytes. This result could be attributed to the low expression of hepatic organic anion-transporting polypeptides OATP1B1 and OATP1B3 in Fa2N-4 cells. In summary, our findings identify limitations of Fa2N-4 cells as a predictive induction model.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.108.020677.

  • ABBREVIATIONS: P450, cytochrome P450; PXR, pregnane X receptor; CAR, constitutive androstane receptor; CITCO, 6-(4-chlorophenyl)imidazo-[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime; PCR, polymerase chain reaction; DMSO, dimethylsulfoxide; OATP, organic anion-transporting polypeptide; BSEP, bile salt exporter protein.

    • Received January 29, 2008.
    • Accepted March 5, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (6)
Drug Metabolism and Disposition
Vol. 36, Issue 6
1 Jun 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Comparison of Immortalized Fa2N-4 Cells and Human Hepatocytes as in Vitro Models for Cytochrome P450 Induction
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Comparison of Immortalized Fa2N-4 Cells and Human Hepatocytes as in Vitro Models for Cytochrome P450 Induction

Niresh Hariparsad, Brian A. Carr, Raymond Evers and Xiaoyan Chu
Drug Metabolism and Disposition June 1, 2008, 36 (6) 1046-1055; DOI: https://doi.org/10.1124/dmd.108.020677

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Comparison of Immortalized Fa2N-4 Cells and Human Hepatocytes as in Vitro Models for Cytochrome P450 Induction

Niresh Hariparsad, Brian A. Carr, Raymond Evers and Xiaoyan Chu
Drug Metabolism and Disposition June 1, 2008, 36 (6) 1046-1055; DOI: https://doi.org/10.1124/dmd.108.020677
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Warfarin PBPK Model with TMDD Mechanism
  • Identification of payload-containing catabolites of ADCs
  • PK Interactions of Licorice with Cytochrome P450s
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics