Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

In Silico Methods for Unraveling the Mechanistic Complexities of Intestinal Absorption: Metabolism-Efflux Transport Interactions

Lana X. Garmire and C. Anthony Hunt
Drug Metabolism and Disposition July 2008, 36 (7) 1414-1424; DOI: https://doi.org/10.1124/dmd.107.020164
Lana X. Garmire
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Anthony Hunt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We present a relatively simple, abstract, yet mechanistically realistic, in silico intestinal device (ISID). Its design enabled exploration of the mechanistic details of absorption for passively absorbed compounds that are also dual substrates of drug-metabolizing enzymes (cyp) and transporters (pgp), including P-glycoprotein. cyp and pgp, functioning as validated analogs of their referents, are autonomous software objects within the ISID. These and other autonomous objects were plugged together to form a device, an ISID, that represents intestinal features at different scales and levels of detail. Changes in proximal-to-distal levels of cyp and pgp are represented separately from the mechanisms that influence drug absorption and metabolism. Results for six proximal-to-distal cyp-pgp patterns are presented, along with results for different cyp/pgp ratios and amounts. We detected no cyp-pgp synergy. However, cyp-pgp antagonism was measured. Increasing the pgp/cyp ratio to 10 increased compound retention in the simulated lumen but did not increase total metabolism. Different proximal-to-distal cyp-pgp patterns, with and without simulated nonspecific, intracellular binding, had substantial effects on measures of absorption, metabolism, and metabolic extraction ratio within the ISID. The changes were due more to cyp than to pgp. The ISID represents a new class of models that is suitable for experimentation. It expands the repertoire of experimental methods for unraveling the mechanistic details of intestinal drug absorption and in anticipating the absorption consequences of drug interactions. To distinguish clearly in silico compounds and processes from corresponding intestinal structures and processes, we use small caps when referring to the former.

Footnotes

  • This study was supported in part by grants provided by the CDH Research Foundation.

  • The work was abstracted in part from a dissertation presented by L.X.G. to the Graduate Division, University of California, Berkeley, CA, in partial fulfillment of the Ph.D. degree.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.107.020164.

  • ABBREVIATIONS: Pgp, P-glycoprotein; ISID, in silico intestinal device; ISTD, in silico transwell device; PCP, physicochemical property; ER, extraction ratio.

    • Received December 17, 2007.
    • Accepted April 23, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (7)
Drug Metabolism and Disposition
Vol. 36, Issue 7
1 Jul 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In Silico Methods for Unraveling the Mechanistic Complexities of Intestinal Absorption: Metabolism-Efflux Transport Interactions
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

In Silico Methods for Unraveling the Mechanistic Complexities of Intestinal Absorption: Metabolism-Efflux Transport Interactions

Lana X. Garmire and C. Anthony Hunt
Drug Metabolism and Disposition July 1, 2008, 36 (7) 1414-1424; DOI: https://doi.org/10.1124/dmd.107.020164

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

In Silico Methods for Unraveling the Mechanistic Complexities of Intestinal Absorption: Metabolism-Efflux Transport Interactions

Lana X. Garmire and C. Anthony Hunt
Drug Metabolism and Disposition July 1, 2008, 36 (7) 1414-1424; DOI: https://doi.org/10.1124/dmd.107.020164
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • AKRs and GUSs in Testosterone Disposition
  • Olanzapine Glucuronidation in Humanized Mice
  • rs2242480 Regulates the Expression of CYP3A4 and CYP3A5
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics