Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Deletion of the NADPH-Cytochrome P450 Reductase Gene in Cardiomyocytes Does Not Protect Mice against Doxorubicin-Mediated Acute Cardiac Toxicity

Cheng Fang, Jun Gu, Fang Xie, Melissa Behr, Weizhu Yang, E. Dale Abel and Xinxin Ding
Drug Metabolism and Disposition August 2008, 36 (8) 1722-1728; DOI: https://doi.org/10.1124/dmd.108.021881
Cheng Fang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jun Gu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fang Xie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Melissa Behr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Weizhu Yang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Dale Abel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xinxin Ding
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A genetic mouse model (designated cardiomyocyte-Cpr-null) with cardiomyocyte-specific deletion of the cytochrome P450 (P450) reductase (Cpr) gene was generated in this study. CPR protein levels, as well the enzyme activity of P450s, were greatly reduced in heart microsomes from the null mice compared with wild-type mice, whereas CPR expression in other organs remained unchanged. Nonetheless, homozygous null mice were normal in appearance, gross anatomy, tissue morphology, and general cardiac functional parameters, and there was no indication of embryonic lethality or premature mortality in contrast to the recognized role of CPR in embryonic development. Thus, this new mouse model should be useful for determination of the in vivo roles of cardiomyocyte CPR and CPR-dependent enzymes, including microsomal P450s, not only in the metabolism and toxicity of numerous xenobiotic compounds but also in cardiac pathophysiology. As a first application, we studied the role of cardiomyocyte CPR and CPR-dependent enzymes in doxorubicin (Dox)-mediated acute cardiotoxicity. Wild-type and null mice were treated with a single i.p. dose of Dox at 5, 10, or 20 mg/kg. The Dox treatment caused apoptosis and vacuolization in cardiomyocytes at the dose of 20 mg/kg and a significant increase in the levels of serum creatine kinase at 10 and 20 mg/kg in both wild-type and null mice. However, there was no significant difference in the extent of Dox-induced cardiac injury between the two strains; this lack of difference suggests that cardiomyocyte CPR and CPR-dependent enzymes do not play critical roles in the acute cardiotoxicity induced by Dox.

Footnotes

  • This study was supported in part by National Institutes of Health Grants ES07462 (to X.D.) and HL70070 (to E.D.A., who is an established investigator of the American Heart Association).

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.108.021881.

  • ABBREVIATIONS: P450, cytochrome P450; AA, arachidonic acid; CPR, cytochrome P450 reductase; HO, heme oxygenase; Cre, Cre recombinase; Dox, doxorubicin; H&E, hematoxylin and eosin; PBS, phosphate-buffered saline; DAPI, 4,6-diamidino-2-phenylindole; TUNEL, terminal deoxynucleotidyl transferase dUTP nick-end labeling; CK, creatine kinase.

    • Received April 15, 2008.
    • Accepted May 5, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (8)
Drug Metabolism and Disposition
Vol. 36, Issue 8
1 Aug 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Deletion of the NADPH-Cytochrome P450 Reductase Gene in Cardiomyocytes Does Not Protect Mice against Doxorubicin-Mediated Acute Cardiac Toxicity
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Deletion of the NADPH-Cytochrome P450 Reductase Gene in Cardiomyocytes Does Not Protect Mice against Doxorubicin-Mediated Acute Cardiac Toxicity

Cheng Fang, Jun Gu, Fang Xie, Melissa Behr, Weizhu Yang, E. Dale Abel and Xinxin Ding
Drug Metabolism and Disposition August 1, 2008, 36 (8) 1722-1728; DOI: https://doi.org/10.1124/dmd.108.021881

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Deletion of the NADPH-Cytochrome P450 Reductase Gene in Cardiomyocytes Does Not Protect Mice against Doxorubicin-Mediated Acute Cardiac Toxicity

Cheng Fang, Jun Gu, Fang Xie, Melissa Behr, Weizhu Yang, E. Dale Abel and Xinxin Ding
Drug Metabolism and Disposition August 1, 2008, 36 (8) 1722-1728; DOI: https://doi.org/10.1124/dmd.108.021881
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Metabolic enzymes in nintedanib metabolism
  • Mechanism of AO Inactivation by Hydralazine
  • Warfarin PBPK modeling with target binding
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics