Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Metabolism, Distribution, and Excretion of a Next Generation Selective Estrogen Receptor Modulator, Lasofoxifene, in Rats and Monkeys

Chandra Prakash, Kim A. Johnson, Clinton M. Schroeder and Michael J. Potchoiba
Drug Metabolism and Disposition September 2008, 36 (9) 1753-1769; DOI: https://doi.org/10.1124/dmd.108.021808
Chandra Prakash
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kim A. Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Clinton M. Schroeder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael J. Potchoiba
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Disposition of lasofoxifene (LAS; 6-phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-5,6,7,8-tetrahydro-naphthalen-2-ol. tartrate) was investigated in rats and monkeys after oral administration of a single oral dose of [14C]LAS. Total mean recoveries of the radiocarbon were 96.7 and 94.3% from rats and monkeys, respectively. The major route of excretion in both species was the feces, and based on a separate study in the bile duct-cannulated rat, this likely reflects excretion in bile rather than incomplete absorption. Whole-body autoradioluminography suggested that [14C]LAS radioequivalents distributed rapidly in the rat with most tissues achieving maximal concentrations at 1 h. Half-life of radioactivity was longest in the uvea (124 h) and shortest in the spleen (∼3 h). LAS was extensively metabolized in both rats and monkeys because no unchanged drug was detected in urine and/or bile. Based on area under the curve(0–24) values, >78% of the circulating radioactivity was due to the metabolites. A total of 22 metabolites were tentatively identified by liquid chromatography-tandem mass spectrometry. Based on the structures of the metabolites, six metabolic pathways of LAS were identified: hydroxylation at the tetraline ring, hydroxylation at the aromatic ring attached to tetraline, methylation of the catechol intermediates by catechol-O-methyl transferase, oxidation at the pyrrolidine ring, and direct conjugation with glucuronic acid and sulfuric acid. LAS and its glucuronide conjugate (M7) were the major circulating drug-related moieties in both rats and monkeys. However, there were notable species-related qualitative and quantitative differences in the metabolic profiles. The catechol (M21) and its sulfate conjugate (M10) were observed only in monkeys, whereas the glucuronide conjugate of the methylated catechol (M8) and hydroxy-LAS (M9) were detected only in rats.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.108.021808.

  • ABBREVIATIONS: ERT, estrogen replacement therapy; SERM, selective estrogen receptor modulator; LAS, lasofoxifene, 6-phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-5,6,7,8-tetrahydro-naphthalen-2-ol. tartrate; ER, estrogen receptor; AUC, area(s) under the curve; HPLC, high-performance liquid chromatography; LC, liquid chromatography; MS, mass spectrometry; MS/MS, tandem mass spectrometry; WBAL, whole-body autoradioluminography; LLOQ, lower quantification limit; β-RAM, radioactive monitor; CID, collision-induced dissociation; CNS, central nervous system.

    • Received April 7, 2008.
    • Accepted May 29, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (9)
Drug Metabolism and Disposition
Vol. 36, Issue 9
1 Sep 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolism, Distribution, and Excretion of a Next Generation Selective Estrogen Receptor Modulator, Lasofoxifene, in Rats and Monkeys
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Metabolism, Distribution, and Excretion of a Next Generation Selective Estrogen Receptor Modulator, Lasofoxifene, in Rats and Monkeys

Chandra Prakash, Kim A. Johnson, Clinton M. Schroeder and Michael J. Potchoiba
Drug Metabolism and Disposition September 1, 2008, 36 (9) 1753-1769; DOI: https://doi.org/10.1124/dmd.108.021808

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Metabolism, Distribution, and Excretion of a Next Generation Selective Estrogen Receptor Modulator, Lasofoxifene, in Rats and Monkeys

Chandra Prakash, Kim A. Johnson, Clinton M. Schroeder and Michael J. Potchoiba
Drug Metabolism and Disposition September 1, 2008, 36 (9) 1753-1769; DOI: https://doi.org/10.1124/dmd.108.021808
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Metabolic enzymes in nintedanib metabolism
  • Mechanism of AO Inactivation by Hydralazine
  • Warfarin PBPK modeling with target binding
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics