Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Metabolism and Transport of the Citrus Flavonoid Hesperetin in Caco-2 Cell Monolayers

Walter Brand, Petronella A. I. van der Wel, Maarit J. Rein, Denis Barron, Gary Williamson, Peter J. van Bladeren and Ivonne M. C. M. Rietjens
Drug Metabolism and Disposition September 2008, 36 (9) 1794-1802; DOI: https://doi.org/10.1124/dmd.107.019943
Walter Brand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Petronella A. I. van der Wel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maarit J. Rein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Denis Barron
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gary Williamson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter J. van Bladeren
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ivonne M. C. M. Rietjens
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Metabolism and transport from intestinal cells back into the lumen by ATP-binding cassette (ABC) transporters is believed to limit the bioavailability of flavonoids. We studied metabolism and transport of the citrus flavonoid hesperetin, the aglycone of hesperidin, using a two-compartment transwell Caco-2 cell monolayer system, simulating the intestinal barrier. The role of apically located ABC transporters P-glycoprotein (MDR1/ABCB1), multidrug resistance protein 2 (ABCC2), and breast cancer resistance protein (BCRP/ ABCG2) in the efflux of hesperetin and its metabolites was studied by coadministration of compounds known to inhibit several classes of ABC transporters, including cyclosporin A, GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide], Ko143 [3-(6-isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1′,2′:1,6]pyrido[3,4-b]indol-3-yl)-propionic acid tert-butyl ester], MK571 (3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid), and PSC-833 (Valspodar). Apically applied hesperetin (10 μM) was metabolized into hesperetin 7-O-glucuronide and hesperetin 7-O-sulfate, identified using high-performance liquid chromatographydiode array detector (DAD), ultraperformance liquid chromatography-DAD-tandem mass spectrometry, and authentic standards, which were transported predominantly to the apical side of the Caco-2 cell monolayer (1.12 cm2), at average (S.D.) rates of 14.3 (3.7) and 2.1 (0.8) pmol/min/monolayer, respectively. Hesperetin aglycone also permeated to the basolateral side, and this process was unaffected by the inhibitors used, possibly implying a passive diffusion process. Inhibition studies, however, showed that efflux of hesperetin conjugates to the apical side involved active transport, which from the pattern of inhibition appeared to involve mainly BCRP. Upon inhibition by the BCRP inhibitor Ko143 (5 μM), the apical efflux of hesperetin conjugates was 1.9-fold reduced (p ≤ 0.01), and transport to the basolateral side was 3.1-fold increased (p ≤ 0.001). These findings elucidate a novel pathway of hesperetin metabolism and transport and show that BCRP-mediated transport could be a limiting step for hesperetin bioavailability.

Footnotes

  • This study was supported by a research grant from the Nestlé Research Center (Lausanne, Switzerland). M.J.R., D.B., G.W., and P.J.v.B. are, or were, employees of Nestlé SA, Switzerland.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.107.019943.

  • ABBREVIATIONS: ABC, ATP binding cassette; Pgp, P-glycoprotein; MRP, multidrug resistance protein; BCRP, breast cancer resistance protein; GF120918, N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide; Ko143, 3-(6-isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1′,2′:1,6]pyrido[3,4-b]indol-3-yl)-propionic acid tert-butyl ester; MK571, 3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid; PSC-833, Valspodar; RT, reverse transcription; qPCR, quantitative polymerase chain reaction; HPLC, high-performance liquid chromatography; MS-MS, tandem mass spectrometry; DAD, diode array detector; uPLC, ultraperformance liquid chromatography; DMSO, dimethyl sulfoxide; DMEM, Dulbecco's modified Eagle's medium; CsA, cyclosporine A; CT, threshold cycle; TEER, trans-epithelial electrical resistance; tR, retention time.

    • Received January 8, 2008.
    • Accepted May 29, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (9)
Drug Metabolism and Disposition
Vol. 36, Issue 9
1 Sep 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolism and Transport of the Citrus Flavonoid Hesperetin in Caco-2 Cell Monolayers
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Metabolism and Transport of the Citrus Flavonoid Hesperetin in Caco-2 Cell Monolayers

Walter Brand, Petronella A. I. van der Wel, Maarit J. Rein, Denis Barron, Gary Williamson, Peter J. van Bladeren and Ivonne M. C. M. Rietjens
Drug Metabolism and Disposition September 1, 2008, 36 (9) 1794-1802; DOI: https://doi.org/10.1124/dmd.107.019943

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Metabolism and Transport of the Citrus Flavonoid Hesperetin in Caco-2 Cell Monolayers

Walter Brand, Petronella A. I. van der Wel, Maarit J. Rein, Denis Barron, Gary Williamson, Peter J. van Bladeren and Ivonne M. C. M. Rietjens
Drug Metabolism and Disposition September 1, 2008, 36 (9) 1794-1802; DOI: https://doi.org/10.1124/dmd.107.019943
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Metabolic enzymes in nintedanib metabolism
  • Mechanism of AO Inactivation by Hydralazine
  • Warfarin PBPK modeling with target binding
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics