Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Cytochrome P450 2C11 5′-Flanking Region and Promoter Mediate in Vivo Suppression by 3-Methylcholanthrene

Rana M. Sawaya and David S. Riddick
Drug Metabolism and Disposition September 2008, 36 (9) 1803-1811; DOI: https://doi.org/10.1124/dmd.108.020966
Rana M. Sawaya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David S. Riddick
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Aromatic hydrocarbons such as 3-methylcholanthrene (MC) elicit toxic and adaptive responses through the aryl hydrocarbon receptor (AHR). Aromatic hydrocarbons act via an unknown mechanism to suppress the transcription of CYP2C11, a growth hormone-regulated gene encoding the male-specific rat hepatic cytochrome P450 2C11. We hypothesize that suppression of CYP2C11 by aromatic hydrocarbons is mediated by the gene's promoter and 5′-flank. Using hydrodynamics-based injections to deliver plasmid DNA to the liver of live rats, we studied the MC responsiveness of luciferase constructs containing 10.1, 5.6, and 2.4 kilobases (kb) of the CYP2C11 5′-flank. MC suppressed CYP2C11-luciferase activity of the 10.1- and 5.6-kb constructs to less than 50% of vehicle levels by 24 and 72 h. Luciferase activity of the 2.4-kb CYP2C11 construct was decreased to 63% of vehicle levels 24 h after MC treatment, but no suppression was detected by 72 h. Negative regulatory element(s) responsible for CYP2C11 reporter suppression by MC exist in the proximal 2.4 kb of the 5′-flank; however, additional cis-acting elements located between –5.6 and –2.4 kb mediate persistent reporter suppression. As a positive control for AHR activation, MC dramatically induced the luciferase activity of a Cyp1a1-driven luciferase plasmid under AHR control. Modulation of reporter gene activity by MC was accompanied by induction of endogenous CYP1A1 and suppression of endogenous CYP2C11 mRNA/protein. This is the first demonstration of aromatic hydrocarbon-mediated suppression of a CYP2C11-luciferase construct, and this finding suggests that the 5′-flanking region and promoter mediate down-regulation of this gene in the intact rat.

Footnotes

  • This work was supported by Canadian Institutes of Health Research Grant MOP-42399 (to D.S.R.).

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.108.020966.

  • ABBREVIATIONS: PAH, polycyclic aromatic hydrocarbon; MC, 3-methylcholanthrene; P450, cytochrome P450; AHR, aryl hydrocarbon receptor; ARNT, aryl hydrocarbon receptor nuclear translocator; TF, transcription factor; DRE, dioxin-responsive element; GH, growth hormone; STAT5, signal transducer and activator of transcription 5; HNF, hepatocyte nuclear factor; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; kb, kilobase; PCR, polymerase chain reaction; RT, reverse transcription; NF, nuclear factor.

    • Received February 12, 2008.
    • Accepted June 3, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (9)
Drug Metabolism and Disposition
Vol. 36, Issue 9
1 Sep 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cytochrome P450 2C11 5′-Flanking Region and Promoter Mediate in Vivo Suppression by 3-Methylcholanthrene
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Cytochrome P450 2C11 5′-Flanking Region and Promoter Mediate in Vivo Suppression by 3-Methylcholanthrene

Rana M. Sawaya and David S. Riddick
Drug Metabolism and Disposition September 1, 2008, 36 (9) 1803-1811; DOI: https://doi.org/10.1124/dmd.108.020966

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Cytochrome P450 2C11 5′-Flanking Region and Promoter Mediate in Vivo Suppression by 3-Methylcholanthrene

Rana M. Sawaya and David S. Riddick
Drug Metabolism and Disposition September 1, 2008, 36 (9) 1803-1811; DOI: https://doi.org/10.1124/dmd.108.020966
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A PBPK model for CBD in adults and children
  • Olanzapine Glucuronidation in Humanized Mice
  • rs2242480 Regulates the Expression of CYP3A4 and CYP3A5
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics