Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Prominent Expression of Xenobiotic Efflux Transporters in Mouse Extraembryonic Fetal Membranes Compared with Placenta

Lauren M. Aleksunes, Yue Cui and Curtis D. Klaassen
Drug Metabolism and Disposition September 2008, 36 (9) 1960-1970; DOI: https://doi.org/10.1124/dmd.108.021337
Lauren M. Aleksunes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yue Cui
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Curtis D. Klaassen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Fetal exposure to xenobiotics can be restricted by transporters at the interface between maternal and fetal circulation. Previous work identified transporters in the placenta; however, less is known about the presence of these transporters in the fetal membranes (i.e., yolk sac and amniotic membranes). The purpose of this study was to quantify mRNA and protein expression of xenobiotic transporters in mouse placenta and fetal membranes during mid to late gestation. Concepti (placenta and fetal membranes, gestation day 11) or placenta and fetal membranes (gestation days 14 and 17) were collected from pregnant mice and analyzed for expression of multidrug resistance-associated proteins (Mrps), multidrug resistance proteins (Mdrs), multidrug and toxin extrusion proteins (Mates), breast cancer resistance protein (Bcrp), and organic anion-transporting polypeptides (Oatps). Maternal liver and kidneys were also collected at day 14 for mRNA and immunohistochemical analysis. mRNA expression of Mrp, Mdr, Bcrp, Mate-1, and Oatp isoforms was detected at day 11. The uptake carriers Oatp2a1, 3a1, 4a1, and 5a1 showed placenta-predominant expression. At days 14 and 17, fetal membranes expressed higher mRNA levels of the efflux transporters Mrp2 (7-fold), Mrp4 (5-fold), Mrp5 (3-fold), Mrp6 (12-fold), Bcrp (2-fold), and Mate-1 (7-fold) than placenta. Western blot analysis of Mrp2, Mrp4, Mrp6, and Bcrp confirmed higher expression in fetal membranes. Immunostaining revealed apical (Mrp2 and Bcrp) and basolateral (Mrp4, 5, and 6) cellular localization in epithelial cells of the yolk sac. In conclusion, xenobiotic transporters in the fetal membranes may provide an additional route to protect the fetus against endogenous chemicals and xenobiotics.

Footnotes

  • This work was supported by National Institutes of Health Grants ES-09649, ES-09716, ES-007079, and RR-0291940.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.108.021337.

  • ABBREVIATIONS: Oatp/OATP, rodent/human organic anion transporting polypeptide; Mrp/MRP, rodent/human multidrug resistance-associated protein; Mdr/MDR, rodent/human multidrug resistance protein; Pgp, PGP, rodent/human P-glycoprotein; Mate/MATE, rodent/human multidrug and toxin extrusion proteins; Bcrp/BCRP, breast cancer resistance protein; PBS, phosphate-buffered saline; bDNA, branched DNA; PBS-Tx, phosphate-buffered saline with 0.1% Triton X; DAPI, 4′,6-diamidino-2-phenylindole.

    • Received March 2, 2008.
    • Accepted June 17, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (9)
Drug Metabolism and Disposition
Vol. 36, Issue 9
1 Sep 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Prominent Expression of Xenobiotic Efflux Transporters in Mouse Extraembryonic Fetal Membranes Compared with Placenta
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Prominent Expression of Xenobiotic Efflux Transporters in Mouse Extraembryonic Fetal Membranes Compared with Placenta

Lauren M. Aleksunes, Yue Cui and Curtis D. Klaassen
Drug Metabolism and Disposition September 1, 2008, 36 (9) 1960-1970; DOI: https://doi.org/10.1124/dmd.108.021337

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Prominent Expression of Xenobiotic Efflux Transporters in Mouse Extraembryonic Fetal Membranes Compared with Placenta

Lauren M. Aleksunes, Yue Cui and Curtis D. Klaassen
Drug Metabolism and Disposition September 1, 2008, 36 (9) 1960-1970; DOI: https://doi.org/10.1124/dmd.108.021337
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Series-Compartment Models of Hepatic Elimination
  • Warfarin PBPK Model with TMDD Mechanism
  • Identification of payload-containing catabolites of ADCs
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics