Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Relationship between Drug/Metabolite Exposure and Impairment of Excretory Transport Function

Maciej J. Zamek-Gliszczynski, J. Cory Kalvass, Gary M. Pollack and Kim L. R. Brouwer
Drug Metabolism and Disposition February 2009, 37 (2) 386-390; DOI: https://doi.org/10.1124/dmd.108.023648
Maciej J. Zamek-Gliszczynski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Cory Kalvass
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gary M. Pollack
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kim L. R. Brouwer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The quantitative impact of excretory transport modulation on the systemic exposure to xenobiotics and derived metabolites is poorly understood. This article presents fundamental relationships between exposure and loss of a specific excretory process that contributes to overall clearance. The mathematical relationships presented herein were explored on the basis of hepatic excretory data for polar metabolites formed in the livers of various transporter-deficient rodents. Experimental data and theoretical relationships indicated that the fold change in exposure is governed by the relationship, 1/(1 – fe), where fe is the fraction excreted by a particular transport protein. Loss of function of a transport pathway associated with fe < 0.5 will have minor consequences (<2-fold) on exposure, but exposure will increase exponentially in response to loss of function of transport pathways with fe > 0.5. These mathematical relationships may be extended to other organs, such as the intestine and kidney, as well as to systemic drug exposure. Finally, the relationship between exposure and fe is not only applicable to complete loss of function of a transport pathway but also can be extended to partial inhibition scenarios by modifying the equation with the ratio of the inhibitor concentration and inhibition constant.

Footnotes

  • This work was supported by the National Institutes of Health [Grant R01 GM41935] and by Eli Lilly and Company.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.108.023648.

  • ABBREVIATIONS: 4MUG, 4-methylumbelliferyl glucuronide; Mrp, multidrug resistance-associated protein; Bcrp, breast cancer resistance protein; WT, wild type; KO, knockout.

    • Received July 30, 2008.
    • Accepted November 13, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 37 (2)
Drug Metabolism and Disposition
Vol. 37, Issue 2
1 Feb 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Relationship between Drug/Metabolite Exposure and Impairment of Excretory Transport Function
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Relationship between Drug/Metabolite Exposure and Impairment of Excretory Transport Function

Maciej J. Zamek-Gliszczynski, J. Cory Kalvass, Gary M. Pollack and Kim L. R. Brouwer
Drug Metabolism and Disposition February 1, 2009, 37 (2) 386-390; DOI: https://doi.org/10.1124/dmd.108.023648

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Relationship between Drug/Metabolite Exposure and Impairment of Excretory Transport Function

Maciej J. Zamek-Gliszczynski, J. Cory Kalvass, Gary M. Pollack and Kim L. R. Brouwer
Drug Metabolism and Disposition February 1, 2009, 37 (2) 386-390; DOI: https://doi.org/10.1124/dmd.108.023648
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Metabolic enzymes in nintedanib metabolism
  • Mechanism of AO Inactivation by Hydralazine
  • Warfarin PBPK modeling with target binding
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics