Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Investigation of the in Vitro Metabolism of the Analgesic Flupirtine

Karen Methling, Przyemslaw Reszka, Michael Lalk, Oldrich Vrana, Eberhard Scheuch, Werner Siegmund, Bernd Terhaag and Patrick J. Bednarski
Drug Metabolism and Disposition March 2009, 37 (3) 479-493; DOI: https://doi.org/10.1124/dmd.108.024364
Karen Methling
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Przyemslaw Reszka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Lalk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Oldrich Vrana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eberhard Scheuch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Werner Siegmund
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bernd Terhaag
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick J. Bednarski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The in vitro metabolism of flupirtine, ethyl-N-[2-amino-6-(4-fluorophenylmethyl-amino)pyridine-3-yl]carbamate, a centrally acting analgesic with muscle tone-reducing activity, was studied. Two flupirtine metabolites were already known: the N-acetylated analog D13223 and 4-fluorohippuric acid. The structure of flupirtine suggested that redox chemistry may play a role in metabolism, and cyclic voltammetry studies showed that the drug undergoes facile and irreversible redox reactions. Thus, oxidative metabolism was investigated first. With CYP3A1-induced rat liver microsomes an 18% turnover of flupirtine and a 20 to 25% turnover of D13223 took place over 30 min, but less than 5% turnover of flupirtine was observed with all human liver microsomal preparations tested, evidence that cytochrome P450 does not contribute appreciably to the metabolism in humans. Likewise, no involvement of human monoamine oxidase (isoforms A and B) was found for either flupirtine or D13223. In contrast, flupirtine was an excellent substrate for both human myeloperoxidase and horse radish peroxidase (HRP). These enzymes produced detectable amounts of oxidation products. Incubations of flupirtine with HRP produced an oxidation product that could be trapped with glutathione, the resulting glutathione conjugate was characterized by mass spectrometry and NMR. Metabolism of D13223 by both peroxidases was also observed but to a much lesser extent. Porcine liver esterases cleave the carbamate group of flupirtine, and both human N-acetyltransferases 1 and 2 acetylated the hydrolysis product, presumably descarboethoxyflupirtine, with nearly equal efficiencies to yield D13223. Incubations of human liver microsomes with flupirtine or the metabolite D13223 together with UDP-glucuronic acid gave two isomeric N-glucuronides in both cases.

Footnotes

  • This work was supported in part by AWD.pharma GmbH & Co. KG; and the Academy of Sciences of the Czech Republic [Grant 1QS500040581].

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.108.024364.

  • ABBREVIATIONS: P450, cytochrome P450; UDP-GA, uridine 5′-diphosphoglucuronic acid; MAO, monoamine oxidase; GSH, reduced glutathione; HPLC, high performance liquid chromatography; LC, liquid chromatography; HRMS, high resolution mass spectrometry; MS/MS, tandem mass spectrometry; HRP, horseradish peroxidase; MPO, myeloperoxidase; CID, collision-induced dissociation; MS, mass spectrometry; CV, cyclic voltammetry; NAT, N-acetyltransferase.

    • Received September 3, 2008.
    • Accepted December 5, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 37 (3)
Drug Metabolism and Disposition
Vol. 37, Issue 3
1 Mar 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Investigation of the in Vitro Metabolism of the Analgesic Flupirtine
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Investigation of the in Vitro Metabolism of the Analgesic Flupirtine

Karen Methling, Przyemslaw Reszka, Michael Lalk, Oldrich Vrana, Eberhard Scheuch, Werner Siegmund, Bernd Terhaag and Patrick J. Bednarski
Drug Metabolism and Disposition March 1, 2009, 37 (3) 479-493; DOI: https://doi.org/10.1124/dmd.108.024364

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Investigation of the in Vitro Metabolism of the Analgesic Flupirtine

Karen Methling, Przyemslaw Reszka, Michael Lalk, Oldrich Vrana, Eberhard Scheuch, Werner Siegmund, Bernd Terhaag and Patrick J. Bednarski
Drug Metabolism and Disposition March 1, 2009, 37 (3) 479-493; DOI: https://doi.org/10.1124/dmd.108.024364
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A PBPK model for CBD in adults and children
  • Antibiotics Induce Changes in the Expression of Rat DPGs
  • Metabolism of Efavirenz by P450s and UGTs in the Brain
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics