Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

The Inhibition of Human Multidrug and Toxin Extrusion 1 Is Involved in the Drug-Drug Interaction Caused by Cimetidine

Soichiro Matsushima, Kazuya Maeda, Katsuhisa Inoue, Kin-ya Ohta, Hiroaki Yuasa, Tsunenori Kondo, Hideki Nakayama, Shigeru Horita, Hiroyuki Kusuhara and Yuichi Sugiyama
Drug Metabolism and Disposition March 2009, 37 (3) 555-559; DOI: https://doi.org/10.1124/dmd.108.023911
Soichiro Matsushima
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kazuya Maeda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katsuhisa Inoue
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kin-ya Ohta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroaki Yuasa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tsunenori Kondo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hideki Nakayama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shigeru Horita
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroyuki Kusuhara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuichi Sugiyama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cimetidine is known to cause drug-drug interactions (DDIs) with organic cations in the kidney, and a previous clinical study showed that coadministration of cimetidine or probenecid with fexofenadine (FEX) decreased its renal clearance. FEX was taken up into human kidney by human organic anion transporter (hOAT) 3 (SLC22A8), but the mechanism of its luminal efflux has not been clarified. The present study examined the molecular mechanism of these DDIs. Saturable uptake of FEX was observed in human kidney slices, with Km and Vmax values of 157 ± 7 μM and 418 ± 16 nmol/15 min/g kidney, respectively. Cimetidine only slightly inhibited its uptake even at 100 μM, far greater than its clinically relevant concentration, whereas 10 μM probenecid markedly inhibited its uptake. As candidate transporters for the luminal efflux of FEX, we focused on human multidrug and toxin extrusions MATE1 (SLC47A1) and MATE2-K (SLC47A2). Saturable uptake of FEX could be observed in human embryonic kidney 293 cells expressing human MATE1 (hMATE1), whereas hMATE2-K-specific uptake of FEX was too small to conduct its further kinetic analysis. The hMATE1-mediated uptake clearance of FEX was inhibited by cimetidine in a concentration-dependent manner, and it was decreased to 60% of the control value in the presence of 3 μM cimetidine. Taken together, our results suggest that the DDI of FEX with probenecid can be explained by the inhibition of renal uptake mediated by hOAT3, whereas the DDI with cimetidine is mainly caused by the inhibition of hMATE1-mediated efflux of FEX rather than the inhibition of its renal uptake process.

Footnotes

  • This work was supported in part by the Ministry of Education, Culture, Sports, Science and Technology grant-in-aid for Scientific Research (A) [Grant 20249008] and grant-in-aid for Young Scientists (B) [Grant 19790119].

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.108.023911.

  • ABBREVIATIONS: DDI, drug-drug interaction; FEX, fexofenadine; OAT, organic anion transporter; OCT, organic cation transporter; h, human; MATE, multidrug and toxin extrusion; TEA, tetraethylammonium; r, rat; m, mouse; HEK, human embryonic kidney; PAH, p-aminohippurate; DMEM, Dulbecco's modified Eagle's medium; PCR, polymerase chain reaction; LC/MS, liquid chromatography/mass spectrometry; PCG, benzylpenicillin; MDR, multidrug resistance; MRP, multidrug resistance-associated protein.

    • Received August 13, 2008.
    • Accepted December 8, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 37 (3)
Drug Metabolism and Disposition
Vol. 37, Issue 3
1 Mar 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Inhibition of Human Multidrug and Toxin Extrusion 1 Is Involved in the Drug-Drug Interaction Caused by Cimetidine
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Inhibition of Human Multidrug and Toxin Extrusion 1 Is Involved in the Drug-Drug Interaction Caused by Cimetidine

Soichiro Matsushima, Kazuya Maeda, Katsuhisa Inoue, Kin-ya Ohta, Hiroaki Yuasa, Tsunenori Kondo, Hideki Nakayama, Shigeru Horita, Hiroyuki Kusuhara and Yuichi Sugiyama
Drug Metabolism and Disposition March 1, 2009, 37 (3) 555-559; DOI: https://doi.org/10.1124/dmd.108.023911

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

The Inhibition of Human Multidrug and Toxin Extrusion 1 Is Involved in the Drug-Drug Interaction Caused by Cimetidine

Soichiro Matsushima, Kazuya Maeda, Katsuhisa Inoue, Kin-ya Ohta, Hiroaki Yuasa, Tsunenori Kondo, Hideki Nakayama, Shigeru Horita, Hiroyuki Kusuhara and Yuichi Sugiyama
Drug Metabolism and Disposition March 1, 2009, 37 (3) 555-559; DOI: https://doi.org/10.1124/dmd.108.023911
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Candesartan glucuronide serves as a CYP2C8 inhibitor
  • Role of AADAC on eslicarbazepine acetate hydrolysis
  • Gene expression profile of human intestinal epithelial cells
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics