Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Prediction of the Hepatic and Renal Clearance of Transporter Substrates in Rats Using in Vitro Uptake Experiments

Tomoko Watanabe, Kazuya Maeda, Tsunenori Kondo, Hideki Nakayama, Shigeru Horita, Hiroyuki Kusuhara and Yuichi Sugiyama
Drug Metabolism and Disposition July 2009, 37 (7) 1471-1479; DOI: https://doi.org/10.1124/dmd.108.026062
Tomoko Watanabe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kazuya Maeda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tsunenori Kondo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hideki Nakayama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shigeru Horita
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroyuki Kusuhara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuichi Sugiyama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The clearance route and the absolute values for hepatic and renal clearance of drugs are important criteria for the selection of drug candidates. Based on pharmacokinetic theory, by assuming that uptake is the rate-determining process for the biliary excretion of drugs, organ intrinsic clearance should be simply estimated by the intrinsic uptake. In this study, to investigate whether organ clearance can be predicted from the in vitro uptake activity, we performed uptake experiments using isolated hepatocytes and kidney slices, integration plot analyses, and in vivo pharmacokinetic studies using 12 barely metabolized drugs in rats. The in vivo hepatic and renal clearance could be approximated by uptake clearance estimated from integration plot analyses, except for the renal clearance of some drugs that was relatively small. The comparison of intrinsic uptake clearance from in vitro experiments and integration plot studies revealed that in vivo hepatic uptake was well explained by uptake into isolated hepatocytes, whereas in kidney, in vivo uptake clearance was 10 to 100 times that in kidney slices and a scaling factor is required for its prediction from in vitro experiments. The organ clearance and the fraction excreted into urine could be predicted from in vitro studies except for drugs whose renal clearance was relatively small. This study suggests that the uptake process is the determining factor for organ clearance of minimally metabolized drugs, and uptake assays using isolated hepatocytes and kidney slices are useful for evaluating the uptake clearance.

Footnotes

  • This study was supported in part by the New Energy and Industrial Technology Development Organization of Japan (Development of Technology to Create Research Model Cells); and the Ministry of Education, Culture, Sports, Science and Technology [Grant 19890119].

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.108.026062.

  • ABBREVIATIONS: Oatp, organic anion transporting polypeptide; Oat, organic anion transporter; E217βG, estradiol-17β-glucuronide; PAH, p-aminohippurate; PCG, benzylpenicillin; SD, Sprague-Dawley; LC, liquid chromatography; MS, mass spectrometry; AUC, area under the plasma concentration-time profile.

  • ↵ Embedded Image The online version of this article (available at http://dmd.aspetjournals.org) contains supplemental material.

    • Accepted April 9, 2009.
    • Received December 8, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 37 (7)
Drug Metabolism and Disposition
Vol. 37, Issue 7
1 Jul 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Prediction of the Hepatic and Renal Clearance of Transporter Substrates in Rats Using in Vitro Uptake Experiments
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Prediction of the Hepatic and Renal Clearance of Transporter Substrates in Rats Using in Vitro Uptake Experiments

Tomoko Watanabe, Kazuya Maeda, Tsunenori Kondo, Hideki Nakayama, Shigeru Horita, Hiroyuki Kusuhara and Yuichi Sugiyama
Drug Metabolism and Disposition July 1, 2009, 37 (7) 1471-1479; DOI: https://doi.org/10.1124/dmd.108.026062

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Prediction of the Hepatic and Renal Clearance of Transporter Substrates in Rats Using in Vitro Uptake Experiments

Tomoko Watanabe, Kazuya Maeda, Tsunenori Kondo, Hideki Nakayama, Shigeru Horita, Hiroyuki Kusuhara and Yuichi Sugiyama
Drug Metabolism and Disposition July 1, 2009, 37 (7) 1471-1479; DOI: https://doi.org/10.1124/dmd.108.026062
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Series-Compartment Models of Hepatic Elimination
  • Warfarin PBPK Model with TMDD Mechanism
  • Identification of payload-containing catabolites of ADCs
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics