Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Metabolite Profiling of Hydroxycinnamate Derivatives in Plasma and Urine after the Ingestion of Coffee by Humans: Identification of Biomarkers of Coffee Consumption

Angélique Stalmach, William Mullen, Denis Barron, Kenichi Uchida, Takao Yokota, Christophe Cavin, Heike Steiling, Gary Williamson and Alan Crozier
Drug Metabolism and Disposition August 2009, 37 (8) 1749-1758; DOI: https://doi.org/10.1124/dmd.109.028019
Angélique Stalmach
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William Mullen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Denis Barron
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenichi Uchida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takao Yokota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christophe Cavin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Heike Steiling
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gary Williamson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alan Crozier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (Cmax), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher Cmax values. The short time to reach Cmax (Tmax) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher Cmax values (145–385 nM) with Tmax values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4–37.1 μmol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 μmol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 μmol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee.

Footnotes

  • This work was funded by the Nestlé Research Centre (Lausanne, Switzerland).

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.109.028019.

  • ABBREVIATIONS: CQA, caffeoylquinic acid; FQA, feruloylquinic acids; p-CoQA, p-coumaroylquinic acids; diCQA, di-caffeoylquinic acids; CQAL, caffeoylquinic acid lactones; Cmax, maximum plasma concentration; HPLC-PDA-MS, high-performance liquid chromatography-photodiode array-mass spectrometry; m.p., melting point; DMSO, dimethyl sulfoxide; SIM, selective ion monitoring; CV, coefficient of variation; Tmax, time to reach maximum plasma concentration; T1/2, half-life elimination time; AUC, area under the curve; Rt, retention time; amu, atomic mass unit.

  • ↵1 Current affiliation: School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom.

    • Accepted May 19, 2009.
    • Received April 15, 2009.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 37 (8)
Drug Metabolism and Disposition
Vol. 37, Issue 8
1 Aug 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolite Profiling of Hydroxycinnamate Derivatives in Plasma and Urine after the Ingestion of Coffee by Humans: Identification of Biomarkers of Coffee Consumption
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Metabolite Profiling of Hydroxycinnamate Derivatives in Plasma and Urine after the Ingestion of Coffee by Humans: Identification of Biomarkers of Coffee Consumption

Angélique Stalmach, William Mullen, Denis Barron, Kenichi Uchida, Takao Yokota, Christophe Cavin, Heike Steiling, Gary Williamson and Alan Crozier
Drug Metabolism and Disposition August 1, 2009, 37 (8) 1749-1758; DOI: https://doi.org/10.1124/dmd.109.028019

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Metabolite Profiling of Hydroxycinnamate Derivatives in Plasma and Urine after the Ingestion of Coffee by Humans: Identification of Biomarkers of Coffee Consumption

Angélique Stalmach, William Mullen, Denis Barron, Kenichi Uchida, Takao Yokota, Christophe Cavin, Heike Steiling, Gary Williamson and Alan Crozier
Drug Metabolism and Disposition August 1, 2009, 37 (8) 1749-1758; DOI: https://doi.org/10.1124/dmd.109.028019
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Functional Characterization of 29 CYP4F2 Variants
  • Exposure-toxicity relation of apatinib
  • ABC phenomenon potentiates anti-HCC efficacy
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics