Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Alternatively Spliced Products of the UGT1A Gene Interact with the Enzymatically Active Proteins to Inhibit Glucuronosyltransferase Activity In Vitro

Judith Bellemare, Mélanie Rouleau, Hugo Girard, Mario Harvey and Chantal Guillemette
Drug Metabolism and Disposition October 2010, 38 (10) 1785-1789; DOI: https://doi.org/10.1124/dmd.110.034835
Judith Bellemare
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mélanie Rouleau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hugo Girard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mario Harvey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chantal Guillemette
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

UDP-glucuronosyltransferases (UGTs) are major mediators in conjugative metabolism. Current data suggest that UGTs, which are anchored in the endoplasmic reticulum membrane, can oligomerize with each other and/or with other metabolic enzymes, a process that may influence their enzymatic activities. We demonstrated previously that the UGT1A locus encodes previously unknown isoforms (denoted “i2”), by alternative usage of the terminal exon 5. Although i2 proteins lack transferase activity, we showed that knockdown of endogenous i2 levels enhanced cellular UGT1A-i1 activity. In this study, we explored the potential of multiple active UGT1A_i1 proteins (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10) to interact with all spliced i2s by coimmunoprecipitation. We further studied the functional consequences of coexpressing various combinations of spliced i1s and i2s from highly similar UGTs, namely UGT1A7, UGT1A8, and UGT1A9, based on expression profiles observed in human tissues. The i1 isoform of each UGT1A coimmunoprecipitated its respective i2 homolog as well as all other i2s, indicating that they can form heteromeric complexes. Functional data further support the fact that i2 splice species alter glucuronidation activity of i1s independently of the identity of the i2, although the degree of inhibition varied, suggesting that this phenomenon may occur in tissues expressing such combinations of splice forms. These results provide biochemical evidence to support the inhibitory effect of i2s on multiple active UGT1As, probably through formation of inactive heteromeric assemblies of i1s and inactive i2s. The relative abundance of active/inactive oligomeric complexes may thus determine transferase activity.

Footnotes

  • This work was supported by the Canadian Institutes of Health Research [Grant MOP-84223] (to C.G.); the National Sciences and Engineering Research Council of Canada; and the Canada Research Chair Program (to C.G.). J.B. and H.G. are both recipients of a Frederick Banting and Charles Best Canada Graduate Scholarship award. M.R. is the recipient of a graduate studentship award from the Fonds de la Recherche en Santé du Québec and National Sciences and Engineering Research Council of Canada.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

    doi:10.1124/dmd.110.034835.

  • ABBREVIATIONS:

    UGT
    UDP-glucuronosyltransferases
    i1
    isoform 1
    i2
    isoform 2
    ER
    endoplasmic reticulum
    HEK
    human embryonic kidney
    SN-38
    7-ethyl-10-hydroxycamptothecin
    PCR
    polymerase chain reaction
    MPA
    mycophenolic acid
    co-IP
    coimmunoprecipitation.

  • Received June 4, 2010.
  • Accepted July 7, 2010.
  • Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 38 (10)
Drug Metabolism and Disposition
Vol. 38, Issue 10
1 Oct 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Alternatively Spliced Products of the UGT1A Gene Interact with the Enzymatically Active Proteins to Inhibit Glucuronosyltransferase Activity In Vitro
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Alternatively Spliced Products of the UGT1A Gene Interact with the Enzymatically Active Proteins to Inhibit Glucuronosyltransferase Activity In Vitro

Judith Bellemare, Mélanie Rouleau, Hugo Girard, Mario Harvey and Chantal Guillemette
Drug Metabolism and Disposition October 1, 2010, 38 (10) 1785-1789; DOI: https://doi.org/10.1124/dmd.110.034835

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Alternatively Spliced Products of the UGT1A Gene Interact with the Enzymatically Active Proteins to Inhibit Glucuronosyltransferase Activity In Vitro

Judith Bellemare, Mélanie Rouleau, Hugo Girard, Mario Harvey and Chantal Guillemette
Drug Metabolism and Disposition October 1, 2010, 38 (10) 1785-1789; DOI: https://doi.org/10.1124/dmd.110.034835
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments.
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Role of Human MSRA on Sulindac Activation
  • Determination of Acyl-, O-, and N-Glucuronide
  • Uptake as the RDS in Pevonedistat Hepatic Clearance
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics