Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Comparative Use of Isolated Hepatocytes and Hepatic Microsomes for Cytochrome P450 Inhibition Studies: Transporter-Enzyme Interplay

Hayley S. Brown, Alison J. Wilby, Jane Alder and J. Brian Houston
Drug Metabolism and Disposition December 2010, 38 (12) 2139-2146; DOI: https://doi.org/10.1124/dmd.110.035824
Hayley S. Brown
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alison J. Wilby
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jane Alder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Brian Houston
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Accurate assignment of the concentration of victim drug/inhibitor available at the enzyme active site, both in vivo and within an in vitro incubation, is an essential requirement in rationalizing and predicting drug-drug interactions. Inhibitor accumulation within the liver, whether as a result of active transport processes or intracellular binding, may best be accounted for using hepatocytes rather than hepatic microsomes to estimate in vitro inhibitory potency. The aims of this study were to compare Ki values determined in rat liver microsomes and freshly isolated rat hepatocytes of four cytochrome P450 (P450) inhibitors (clarithromycin, enoxacin, nelfinavir, and saquinavir) with known hepatic transporter involvement and a range of uptake (cell/medium concentration ratios 20–3000) and clearance (10–1200 μl/min/106 cells) properties. Inhibition studies were performed using two well established P450 probe substrates (theophylline and midazolam). Comparison of unbound Ki values showed marked differences between the two in vitro systems for inhibition of metabolism. In two cases (clarithromycin and enoxacin, both low-clearance drugs), inhibitory potency in hepatocytes markedly exceeded that in microsomes (10- to 20-fold), and this result was consistent with their high cell/medium concentration ratios. For nelfinavir and saquinavir (high-clearance, extensively metabolized drugs), the opposite trend was seen in the Ki values: despite very high cell/medium concentration ratios, stronger inhibition was evident within microsomal preparations. Hence, the consequences of hepatic accumulation resulting from uptake transporters vary according to the clearance of the inhibitor. This study demonstrates that transporter-enzyme interplay can result in differences in inhibitory potency between microsomes and hepatocytes and hence drug-drug interaction predictions that are not always intuitive.

Footnotes

  • This work was supported in part by a consortium of pharmaceutical companies (GlaxoSmithKline, Lilly, Novartis, Pfizer, and Servier) within the Centre for Applied Pharmacokinetic Research at the University of Manchester. A.J.W. was supported by a Biotechnology and Biological Sciences Research Council Collaborative Award in Science and Engineering studentship with Roche Products Ltd.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

    doi:10.1124/dmd.110.035824.

  • ABBREVIATIONS:

    DDI
    drug-drug interaction
    P450
    cytochrome P450
    CLAR
    clarithromycin
    ENX
    enoxacin
    NFV
    nelfinavir
    SQV
    saquinavir
    YKpu
    true hepatocyte/medium unbound drug concentration ratio reflecting purely distribution processes
    Kpu, app
    apparent hepatocyte/medium unbound drug concentration ratio reflecting both elimination and distribution processes
    1,3-DMU
    1,3-dimethyluric acid.

  • Received August 9, 2010.
  • Accepted September 16, 2010.
  • Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 38 (12)
Drug Metabolism and Disposition
Vol. 38, Issue 12
1 Dec 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Comparative Use of Isolated Hepatocytes and Hepatic Microsomes for Cytochrome P450 Inhibition Studies: Transporter-Enzyme Interplay
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Comparative Use of Isolated Hepatocytes and Hepatic Microsomes for Cytochrome P450 Inhibition Studies: Transporter-Enzyme Interplay

Hayley S. Brown, Alison J. Wilby, Jane Alder and J. Brian Houston
Drug Metabolism and Disposition December 1, 2010, 38 (12) 2139-2146; DOI: https://doi.org/10.1124/dmd.110.035824

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Comparative Use of Isolated Hepatocytes and Hepatic Microsomes for Cytochrome P450 Inhibition Studies: Transporter-Enzyme Interplay

Hayley S. Brown, Alison J. Wilby, Jane Alder and J. Brian Houston
Drug Metabolism and Disposition December 1, 2010, 38 (12) 2139-2146; DOI: https://doi.org/10.1124/dmd.110.035824
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments.
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Candesartan glucuronide serves as a CYP2C8 inhibitor
  • Role of AADAC on eslicarbazepine acetate hydrolysis
  • Gene expression profile of human intestinal epithelial cells
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics