Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Rapid CommunicationShort Communication

Genetic Variants of CYP3A4 and CYP3A5 in Cynomolgus and Rhesus Macaques

Yasuhiro Uno, Akinori Matsushita, Naoki Osada, Shotaro Uehara, Sakae Kohara, Ryoichi Nagata, Koichiro Fukuzaki, Masahiro Utoh, Norie Murayamay and Hiroshi Yamazaki
Drug Metabolism and Disposition February 2010, 38 (2) 209-214; DOI: https://doi.org/10.1124/dmd.109.029710
Yasuhiro Uno
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Akinori Matsushita
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Naoki Osada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shotaro Uehara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sakae Kohara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryoichi Nagata
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Koichiro Fukuzaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masahiro Utoh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Norie Murayamay
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroshi Yamazaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cynomolgus and rhesus macaques are frequently used in preclinical trials due to their close evolutionary relationships to humans. We conducted an initial screening for genetic variants in cynomolgus and rhesus macaque genes orthologous to human CYP3A4 and CYP3A5. Genetic screening of 78 Indochinese and Indonesian cynomolgus macaques and 34 Chinese rhesus macaques revealed a combined total of 42 CYP3A4 genetic variants, including 12 nonsynonymous variants, and 34 CYP3A5 genetic variants, including nine nonsynonymous variants. Four of these nonsynonymous variants were located at substrate recognition sites or the heme-binding region, domains essential for protein function, including c.886G>A (V296M) and c.1310G>A (S437N) in CYP3A4 and c.1437C>G (N479K) and c.1310G>C (T437S) in CYP3A5. The mutant proteins of these genetic variants were expressed in Escherichia coli and purified. Metabolic activity of these proteins measured using midazolam and nifedipine as substrates showed that none of these protein variants substantially influences the drug-metabolizing capacity of CYP3A4 or CYP3A5 protein. In Indonesian cynomolgus macaques, we also found IVS3+1delG in CYP3A4 and c.625A>T in CYP3A5, with which an intact protein cannot be produced due to a frameshift generated. Screening additional genomes revealed that two of 239 animals and three of 258 animals were heterozygous for IVS3+1delG of CYP3A4 and c.625A>T of CYP3A5, respectively. Some genetic variants were unevenly distributed between Indochinese and Indonesian cynomolgus macaques and between cynomolgus and rhesus macaques. Information on genetic diversity of macaque CYP3A4 and CYP3A5 presented here could be useful for successful drug metabolism studies conducted in macaques.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

    doi:10.1124/dmd.109.029710

  • ↵Embedded Image The online version of this article (available at http://dmd.aspetjournals.org) contains supplemental material.

  • P450
    cytochrome P450
    PCR
    polymerase chain reaction
    UTR
    untranslated region
    RT
    reverse transcription
    SRS
    substrate recognition site.

    • Received July 29, 2009.
    • Accepted November 10, 2009.
  • Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 38 (2)
Drug Metabolism and Disposition
Vol. 38, Issue 2
1 Feb 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Genetic Variants of CYP3A4 and CYP3A5 in Cynomolgus and Rhesus Macaques
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationShort Communication

Genetic Variants of CYP3A4 and CYP3A5 in Cynomolgus and Rhesus Macaques

Yasuhiro Uno, Akinori Matsushita, Naoki Osada, Shotaro Uehara, Sakae Kohara, Ryoichi Nagata, Koichiro Fukuzaki, Masahiro Utoh, Norie Murayamay and Hiroshi Yamazaki
Drug Metabolism and Disposition February 1, 2010, 38 (2) 209-214; DOI: https://doi.org/10.1124/dmd.109.029710

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationShort Communication

Genetic Variants of CYP3A4 and CYP3A5 in Cynomolgus and Rhesus Macaques

Yasuhiro Uno, Akinori Matsushita, Naoki Osada, Shotaro Uehara, Sakae Kohara, Ryoichi Nagata, Koichiro Fukuzaki, Masahiro Utoh, Norie Murayamay and Hiroshi Yamazaki
Drug Metabolism and Disposition February 1, 2010, 38 (2) 209-214; DOI: https://doi.org/10.1124/dmd.109.029710
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Acknowledgments.
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Preincubation Effects on Inhibition of OCT1 by CsA
  • Carbamazepine Metabolite and Hypersensitivity Reactions
  • SULT4A1 Preserves Mitochondrial Function
Show more Short Communication

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics