Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Vectorial Transport of Nucleoside Analogs from the Apical to the Basolateral Membrane in Double-Transfected Cells Expressing the Human Concentrative Nucleoside Transporter hCNT3 and the Export Pump ABCC4

Maria Rius, Daniela Keller, Manuela Brom, Johanna Hummel-Eisenbeiss, Frank Lyko and Dietrich Keppler
Drug Metabolism and Disposition July 2010, 38 (7) 1054-1063; DOI: https://doi.org/10.1124/dmd.110.032664
Maria Rius
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniela Keller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Manuela Brom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Johanna Hummel-Eisenbeiss
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frank Lyko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dietrich Keppler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The identification of the transport proteins responsible for the uptake and the efflux of nucleosides and their metabolites enables the characterization of their vectorial transport and a better understanding of their absorption, distribution, and elimination. Human concentrative nucleoside transporters (hCNTs/SLC28A) are known to mediate the transport of natural nucleosides and some nucleoside analogs into cells in a sodium-dependent and unidirectional manner. On the other hand, several human multidrug resistance proteins [human ATP-binding cassette transporter, subfamily C (ABCC)] cause resistance against nucleoside analogs and mediate transport of phosphorylated nucleoside derivatives out of the cells in an ATP-dependent manner. For the integrated analysis of uptake and efflux of these compounds, we established a double-transfected Madin-Darby canine kidney (MDCK) II cell line stably expressing the human uptake transporter hCNT3 in the apical membrane and the human efflux pump ABCC4 in the basolateral membrane. The direction of transport was from the apical to the basolateral compartment, which is in line with the unidirectional transport and the localization of both recombinant proteins in the MDCKII cells. Recombinant hCNT3 mediated the transport of several known nucleoside substrates, and we identified 5-azacytidine as a new substrate for hCNT3. It is of interest that coexpression of both transporters was confirmed in pancreatic adenocarcinomas, which represent an important clinical indication for the therapeutic use of nucleoside analogs. Thus, our results establish a novel cell system for studies on the vectorial transport of nucleosides and their analogs from the apical to the basolateral compartment. The results contribute to a better understanding of the cellular transport characteristics of nucleoside drugs.

Footnotes

  • This work was supported in part by the German Cancer Research Center, Heidelberg, Germany; the Wilhelm Sander Foundation, Munich, Germany [Grant 2004.101.1]; the Deutsche Krebshilfe, Bonn, Germany [Grant 107150]; and the Peter und Traudl Engelhorn-Stiftung zur Förderung der Biotechnologie und Gentechnik (to M.R.).

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

    doi:10.1124/dmd.110.032664.

  • ABBREVIATIONS:

    hCNT
    human concentrative nucleoside transporter
    hENT
    human equilibrative nucleoside transporter
    ABCC
    human ATP-binding cassette transporter, subfamily C
    MDCK
    Madin-Darby canine kidney
    5-F-5′-dUrd
    5-fluoro-5′-deoxyuridine
    5-azaCyd
    5-azacytidine
    5-aza-2′-dCyd
    5-aza-2′-deoxycytidine
    NBTI
    S-(4-nitrobenzyl)-6-thioinosine)
    NCBI
    National Center for Biotechnology Information
    PBS
    phosphate-buffered saline.

  • Received February 9, 2010.
  • Accepted April 1, 2010.
  • Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 38 (7)
Drug Metabolism and Disposition
Vol. 38, Issue 7
1 Jul 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Vectorial Transport of Nucleoside Analogs from the Apical to the Basolateral Membrane in Double-Transfected Cells Expressing the Human Concentrative Nucleoside Transporter hCNT3 and the Export Pump ABCC4
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Vectorial Transport of Nucleoside Analogs from the Apical to the Basolateral Membrane in Double-Transfected Cells Expressing the Human Concentrative Nucleoside Transporter hCNT3 and the Export Pump ABCC4

Maria Rius, Daniela Keller, Manuela Brom, Johanna Hummel-Eisenbeiss, Frank Lyko and Dietrich Keppler
Drug Metabolism and Disposition July 1, 2010, 38 (7) 1054-1063; DOI: https://doi.org/10.1124/dmd.110.032664

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Vectorial Transport of Nucleoside Analogs from the Apical to the Basolateral Membrane in Double-Transfected Cells Expressing the Human Concentrative Nucleoside Transporter hCNT3 and the Export Pump ABCC4

Maria Rius, Daniela Keller, Manuela Brom, Johanna Hummel-Eisenbeiss, Frank Lyko and Dietrich Keppler
Drug Metabolism and Disposition July 1, 2010, 38 (7) 1054-1063; DOI: https://doi.org/10.1124/dmd.110.032664
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Functional Characterization of 29 CYP4F2 Variants
  • Exposure-toxicity relation of apatinib
  • ABC phenomenon potentiates anti-HCC efficacy
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics