Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Metabolism of Ramelteon in Human Liver Microsomes and Correlation with the Effect of Fluvoxamine on Ramelteon Pharmacokinetics

R. Scott Obach and Tim F. Ryder
Drug Metabolism and Disposition August 2010, 38 (8) 1381-1391; DOI: https://doi.org/10.1124/dmd.110.034009
R. Scott Obach
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tim F. Ryder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Ramelteon is a melatonin receptor agonist used as a treatment for insomnia. It is subject to a remarkably large drug-drug interaction (DDI) caused by fluvoxamine coadministration, resulting in a more than 100-fold increase in exposure. The objective of this study was to determine whether the DDI could be estimated using in vitro metabolism data. Ramelteon was shown to undergo hydroxylation in human liver microsomes to eight metabolites via six pathways. The main routes of metabolism included hydroxylation on the ethyl side chain and the benzylic position of the cyclopentyl ring, as assessed through enzyme kinetic measurements. Hydroxylation at the other benzylic position was observed in human intestinal microsomes. Ramelteon metabolism was catalyzed by CYP1A2, CYP2C19, and CYP3A4 as shown through the use of recombinant human cytochrome P450 enzymes and specific inhibitors. In liver, CYP1A2, CYP2C19, and CYP3A4 were estimated to contribute 49, 42, and 8.6%, respectively, whereas in intestine only CYP3A4 contributes. The in vitro data were used to estimate the magnitudes of DDI caused by ketoconazole, fluconazole, and fluvoxamine. The DDIs caused by the former were reliably estimated (1.82-fold estimated versus 1.82-fold actual for ketoconazole; 2.99-fold estimated versus 2.36-fold actual for fluconazole), whereas for fluvoxamine it was underestimated (11.4-fold estimated versus 128-fold actual). This suggests that there may be a limit on the magnitude of DDI that can be estimated from in vitro data. Nevertheless, the example of the fluvoxamine-ramelteon DDI offers a unique example wherein one drug can simultaneously inhibit multiple enzymatic pathways of a second drug.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

    doi:10.1124/dmd.110.034009.

  • ↵Embedded Image The online version of this article (available at http://dmd.aspetjournals.org) contains supplemental material.

  • ABBREVIATIONS:

    DDI
    drug-drug interaction
    P450
    cytochrome P450
    AUC
    area under the curve
    HPLC/MS
    high-performance liquid chromatography/mass spectrometry
    DMSO
    dimethyl sulfoxide
    HSQC
    heteronuclear single quantum correlation
    COSY
    correlation spectroscopy.

  • Received April 15, 2010.
  • Accepted May 17, 2010.
  • Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 38 (8)
Drug Metabolism and Disposition
Vol. 38, Issue 8
1 Aug 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolism of Ramelteon in Human Liver Microsomes and Correlation with the Effect of Fluvoxamine on Ramelteon Pharmacokinetics
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Metabolism of Ramelteon in Human Liver Microsomes and Correlation with the Effect of Fluvoxamine on Ramelteon Pharmacokinetics

R. Scott Obach and Tim F. Ryder
Drug Metabolism and Disposition August 1, 2010, 38 (8) 1381-1391; DOI: https://doi.org/10.1124/dmd.110.034009

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Metabolism of Ramelteon in Human Liver Microsomes and Correlation with the Effect of Fluvoxamine on Ramelteon Pharmacokinetics

R. Scott Obach and Tim F. Ryder
Drug Metabolism and Disposition August 1, 2010, 38 (8) 1381-1391; DOI: https://doi.org/10.1124/dmd.110.034009
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments.
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Warfarin PBPK Model with TMDD Mechanism
  • Identification of payload-containing catabolites of ADCs
  • PK Interactions of Licorice with Cytochrome P450s
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics