Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Exhibits Time- and Dose-Dependent Localization in Kidney, Liver, and Intestine after Intravenous Dosing: Results from High Resolution Autoradiography in Rats

Andreas Greischel, Rudolf Binder and Juergen Baierl
Drug Metabolism and Disposition September 2010, 38 (9) 1443-1448; DOI: https://doi.org/10.1124/dmd.110.034199
Andreas Greischel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rudolf Binder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Juergen Baierl
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Linagliptin is an orally active dipeptidyl peptidase-4 (DPP-4) inhibitor that is under development for the treatment of type 2 diabetes and shows dose-dependent pharmacokinetics in rats and humans. With microscopic autoradiography, the dose dependence of cellular distribution of [3H]linagliptin-related radioactivity was investigated in kidney at 3 h after intravenous injection of 7.4, 100, and 2000 μg/kg [3H]linagliptin. Furthermore, distribution of radioactivity in kidney, liver, and small intestine was investigated in relation to time (2 min, 3 h, and 192 h) after intravenous injection of 7.4 μg/kg [3H]linagliptin. The localization of radioactivity in the kidney at 3 h after administration of 7.4, 100, and 2000 μg/kg [3H]linagliptin changed with increasing dose from cortical glomeruli and parts of proximal tubule parts to parts of medullar proximal tubule. In addition, the compound distribution in the kidney shifted with time after administration of 7.4 μg/kg [3H]linagliptin from glomeruli (2 min) to the lower parts of proximal tubules (192 h). The radioactivity within proximal tubules was located primarily in the brush border. In the liver, the radioactivity persisted mainly around the portal triads and in the bile duct from 2 min to 192 h. In the small intestine, the radioactivity shifted from the lamina propria (2 min) to the surface of the villi and/or intestinal lumen (192 h). In conclusion, the cellular distribution pattern of [3H]linagliptin-related radioactivity reflected the known distribution of DPP-4. Together with the persistence of binding, this result supports the high relevance of DPP-4 binding of linagliptin for its pharmacokinetics and pharmacodynamics.

Footnotes

  • This work was sponsored by Boehringer Ingelheim Pharma GmbH & Co. KG, Germany.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

    doi:10.1124/dmd.110.034199.

  • ABBREVIATIONS:

    GLP-1
    glucagon-like peptide-1
    DPP-4
    dipeptidyl peptidase-4.

  • Received April 29, 2010.
  • Accepted June 10, 2010.
  • Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 38 (9)
Drug Metabolism and Disposition
Vol. 38, Issue 9
1 Sep 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Exhibits Time- and Dose-Dependent Localization in Kidney, Liver, and Intestine after Intravenous Dosing: Results from High Resolution Autoradiography in Rats
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Exhibits Time- and Dose-Dependent Localization in Kidney, Liver, and Intestine after Intravenous Dosing: Results from High Resolution Autoradiography in Rats

Andreas Greischel, Rudolf Binder and Juergen Baierl
Drug Metabolism and Disposition September 1, 2010, 38 (9) 1443-1448; DOI: https://doi.org/10.1124/dmd.110.034199

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Exhibits Time- and Dose-Dependent Localization in Kidney, Liver, and Intestine after Intravenous Dosing: Results from High Resolution Autoradiography in Rats

Andreas Greischel, Rudolf Binder and Juergen Baierl
Drug Metabolism and Disposition September 1, 2010, 38 (9) 1443-1448; DOI: https://doi.org/10.1124/dmd.110.034199
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments.
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Human ADME Properties of Abrocitinib
  • MSCs Pharmacokinetics under liver diseases
  • OATP1B Downregulation in CDCA-Treated Monkeys
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics