Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Cynomolgus Monkey CYP2D44 Newly Identified in Liver, Metabolizes Bufuralol, and Dextromethorphan

Yasuhiro Uno, Shotaro Uehara, Sakae Kohara, Norie Murayama and Hiroshi Yamazaki
Drug Metabolism and Disposition September 2010, 38 (9) 1486-1492; DOI: https://doi.org/10.1124/dmd.110.033274
Yasuhiro Uno
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shotaro Uehara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sakae Kohara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Norie Murayama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroshi Yamazaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The cynomolgus monkey is used in drug metabolism studies, because of its evolutionary closeness to human, including cytochrome P450. Cynomolgus monkey CYP2D17, highly homologous to human CYP2D6, has been identified and characterized. Here, we report characterization of another CYP2D, CYP2D44, identified in cynomolgus monkey liver. The CYP2D44 cDNA contained an open reading frame of 497 amino acids sharing high sequence identity (87–93%) with other primate CYP2Ds. CYP2D44 mRNA was predominantly expressed in liver, similar to CYP2D17 mRNA. CYP2D17 and CYP2D44 form a gene cluster in the genome, similar to human CYP2Ds. Metabolic assays of the CYP2D17 and CYP2D44 proteins heterologously expressed in Escherichia coli indicated that CYP2D44 metabolized human CYP2D6 substrates, bufuralol and dextromethorphan (bufuralol 1′-hydroxylation and dextromethorphan O-demethylation) but to a lesser extent than CYP2D17. Kinetic analysis of dextromethorphan metabolism indicated that the apparent Km and Vmax of CYP2D17 and CYP2D44 catalyzed O-demethylation were similar, and, the Vmax values of CYP2D17 and CYP2D44 catalyzed N-demethylation (which human CYP2D6 catalyzes much less effectively) were similar, but the apparent Km of the CYP2D44 reaction was higher. Western blot analysis showed that CYP2D proteins were expressed in cynomolgus and rhesus monkey liver as well as in human and marmoset liver. Similar to CYP2D6, CYP2D44 copy number varied among the eight cynomolgus monkeys and four rhesus monkeys used in this study. These results indicated that CYP2D44, together with CYP2D17, had functional characteristics similar to those of human CYP2D6 but measurably differed in dextromethorphan N-demethylation, suggesting its importance for CYP2D-dependent drug metabolism in macaque.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

    doi:10.1124/dmd.110.033274.

  • ABBREVIATIONS:

    P450
    cytochrome P450
    EST
    expressed sequence tag
    RT
    reverse transcription
    PCR
    polymerase chain reaction
    CNV
    copy number variation
    SRS
    substrate recognition site
    SNPs
    single nucleotide polymorphisms.

  • Received March 15, 2010.
  • Accepted May 25, 2010.
  • Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 38 (9)
Drug Metabolism and Disposition
Vol. 38, Issue 9
1 Sep 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cynomolgus Monkey CYP2D44 Newly Identified in Liver, Metabolizes Bufuralol, and Dextromethorphan
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Cynomolgus Monkey CYP2D44 Newly Identified in Liver, Metabolizes Bufuralol, and Dextromethorphan

Yasuhiro Uno, Shotaro Uehara, Sakae Kohara, Norie Murayama and Hiroshi Yamazaki
Drug Metabolism and Disposition September 1, 2010, 38 (9) 1486-1492; DOI: https://doi.org/10.1124/dmd.110.033274

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Cynomolgus Monkey CYP2D44 Newly Identified in Liver, Metabolizes Bufuralol, and Dextromethorphan

Yasuhiro Uno, Shotaro Uehara, Sakae Kohara, Norie Murayama and Hiroshi Yamazaki
Drug Metabolism and Disposition September 1, 2010, 38 (9) 1486-1492; DOI: https://doi.org/10.1124/dmd.110.033274
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments.
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Ontogeny of CPPGL
  • Expression of AKR and SDR Isoforms in the Human Intestine
  • Interaction of Human OATP1B1 with PDZK1
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics