Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Cytochrome P450 Pig Liver Pie: Determination of Individual Cytochrome P450 Isoform Contents in Microsomes from Two Pig Livers Using Liquid Chromatography in Conjunction with Mass Spectrometry

Brahim Achour, Jill Barber and Amin Rostami-Hodjegan
Drug Metabolism and Disposition November 2011, 39 (11) 2130-2134; DOI: https://doi.org/10.1124/dmd.111.040618
Brahim Achour
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jill Barber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amin Rostami-Hodjegan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

This article has a correction. Please see:

  • Correction to “Cytochrome P450 Pig Liver Pie: Determination of Individual Cytochrome P450 Isoform Contents in Microsomes from Two Pig Livers Using Liquid Chromatography in Conjunction with Mass Spectroscopy” - January 01, 2012

Abstract

The cytochrome P450 (P450) family of enzymes is a major player in the metabolism of therapeutic drugs available on the market, and the development of novel drugs has to take into account these enzymes in the fate of new drugs. Testing the pharmacokinetic behavior of new drugs in animals is a common part of the drug development process. Pigs are increasingly used for this purpose because of their similarity of enzymatic pattern to humans. In this study, adult Suffolk White pig liver microsomal samples were analyzed using mass-spectrometry-based techniques to identify and relatively quantify the porcine hepatic P450 enzymes. The total corrected microsomal protein content (milligrams of protein per gram of liver tissue) was estimated at 32.6 and 36.2 mg/g liver tissue in two samples, and the main identified liver P450 subfamilies were CYP1A, CYP2A, CYP2C, CYP2D, CYP2E, and CYP3A. Label-free quantification was performed using the exponentially modified protein abundance index, and the highest abundance enzymes were CYP2A19 at 34% and CYP2D25 at 26% of the total identified drug-metabolizing P450 enzymes. The highest abundance subfamilies were CYP2A (34%), CYP2C (16%), CYP2D (26%), and CYP3A (14%). Moreover, primary sequence alignment was used to identify human homologs of the identified porcine P450s. Porcine CYP1A2 and CYP2E1 were shown to be equivalent to human CYP1A2 and CYP2E1, respectively. Porcine CYP2A19 has the highest sequence homology to human CYP2A6 and CYP2A13, and pig CYP2C33v4 and CYP2C49 are the porcine equivalent of human CYP2C9 and CYP2C18, respectively. Both identified pig CYP3A enzymes (CYP3A29 and CYP39) were highly homologous to CYP3A4/5.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

    doi:10.1124/dmd.111.040618.

  • ABBREVIATIONS:

    P450
    cytochrome P450
    PAGE
    polyacrylamide gel electrophoresis
    TEMED
    N,N,N′,N′-tetramethylethylenediamine
    MALDI-TOF
    matrix-assisted laser desorption ionization/time-of-flight
    MS
    mass spectrometry
    LC
    liquid chromatography
    MS/MS
    tandem mass spectrometry
    emPAI
    exponentially modified protein abundance index
    MPPGL
    mg protein per gram liver tissue.

  • Received May 31, 2011.
  • Accepted July 27, 2011.
  • Copyright © 2011 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 39 (11)
Drug Metabolism and Disposition
Vol. 39, Issue 11
1 Nov 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cytochrome P450 Pig Liver Pie: Determination of Individual Cytochrome P450 Isoform Contents in Microsomes from Two Pig Livers Using Liquid Chromatography in Conjunction with Mass Spectrometry
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

PORKY PIE: RELATIVE ABUNDANCE OF P450s IN PIG LIVER

Brahim Achour, Jill Barber and Amin Rostami-Hodjegan
Drug Metabolism and Disposition November 1, 2011, 39 (11) 2130-2134; DOI: https://doi.org/10.1124/dmd.111.040618

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

PORKY PIE: RELATIVE ABUNDANCE OF P450s IN PIG LIVER

Brahim Achour, Jill Barber and Amin Rostami-Hodjegan
Drug Metabolism and Disposition November 1, 2011, 39 (11) 2130-2134; DOI: https://doi.org/10.1124/dmd.111.040618
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Results
    • Discussion
    • Conclusions
    • Authorship Contributions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Role of Human MSRA on Sulindac Activation
  • Determination of Acyl-, O-, and N-Glucuronide
  • TMDD Affects PK of IL-10 Fc-fusion Proteins
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics