Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Ethanol Induction of CYP2A5: Permissive Role for CYP2E1

Yongke Lu, Jian Zhuge, Defeng Wu and Arthur I. Cederbaum
Drug Metabolism and Disposition February 2011, 39 (2) 330-336; DOI: https://doi.org/10.1124/dmd.110.035691
Yongke Lu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jian Zhuge
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Defeng Wu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arthur I. Cederbaum
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

CYP2A5 metabolizes xenobiotics and activates hepatocarcinogens, and induction occurs in response to hepatic damage and cellular stress. We evaluated whether ethanol can elevate CYP2A5 and whether CYP2E1 plays a role in the ethanol induction of CYP2A5. Wild-type (WT), CYP2E1 knockout (KO), and CYP2E1 knockin (KI) mice were fed ethanol for 3 weeks. Ethanol increased CYP2E1 and CYP2A5 protein and activity in WT mice but not in the KO mice. Induction of CYP2A5 (and CYP2E1) was restored in the KI mice. Ethanol induction of CYP2A5 occurred only after CYP2E1 was first induced. Immunohistochemical staining revealed that CYP2E1 and CYP2A5 colocalize to the same zones in the liver. Ethanol also elevated CYP2A5 mRNA levels in WT and KI mice but not in KO mice. Induction of CYP2A5 by cadmium was partially decreased in KO mice compared with WT or KI mice. Ethanol elevated CYP2A4 mRNA levels in all mice although the extent of induction was lowest in the KO mice. In summary, ethanol elevated mouse hepatic CYP2A5 levels, which may be of toxicological significance because CYP2A5 metabolizes nicotine and other drugs and activates hepatocarcinogens. Induction of CYP2A5 by ethanol is potentiated by the induction of CYP2E1. We speculate that ethanol induction of CYP2E1 followed by increases in reactive oxygen species and activation of Nrf2 are important steps in the mechanism by which ethanol induces CYP2A5. The possibility that induction of CYP2E1 is permissive for the induction of CYP2A5 may reflect a new contribution by CYP2E1 to the actions of ethanol.

Footnotes

  • This work was supported by the National Institutes of Health National Institute on Alcohol Abuse and Alcoholism [Grants R01-AA017425, AA018790, P20-AA017067].

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

    doi:10.1124/dmd.110.035691.

  • ABBREVIATIONS:

    KO
    knockout
    KI
    knockin
    WT
    wild-type
    Vc
    vitamin C
    NAC
    N-acetyl-cysteine
    PCR
    polymerase chain reaction
    PNP
    p-nitrophenol
    ROS
    reactive oxygen species.

  • Received July 29, 2010.
  • Accepted November 4, 2010.
  • Copyright © 2011 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 39 (2)
Drug Metabolism and Disposition
Vol. 39, Issue 2
1 Feb 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ethanol Induction of CYP2A5: Permissive Role for CYP2E1
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Ethanol Induction of CYP2A5: Permissive Role for CYP2E1

Yongke Lu, Jian Zhuge, Defeng Wu and Arthur I. Cederbaum
Drug Metabolism and Disposition February 1, 2011, 39 (2) 330-336; DOI: https://doi.org/10.1124/dmd.110.035691

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Ethanol Induction of CYP2A5: Permissive Role for CYP2E1

Yongke Lu, Jian Zhuge, Defeng Wu and Arthur I. Cederbaum
Drug Metabolism and Disposition February 1, 2011, 39 (2) 330-336; DOI: https://doi.org/10.1124/dmd.110.035691
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Ontogeny of CPPGL
  • Expression of AKR and SDR Isoforms in the Human Intestine
  • Metabolism of Lufotrelvir in Humans
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics