Abstract
Morinidazole [R,S-1-(2-methyl-5-nitro-1H-imidazol-1-yl)-3-morpholinopropan-2-ol] is a new 5-nitroimidazole class antimicrobial agent. The present study aimed to determine the metabolism and pharmacokinetics of morinidazole in humans and to identify the enzymes responsible for the formation of the major metabolites. Plasma and urine samples were collected before and after an intravenous drip infusion of 500 mg of racemic morinidazole. Ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry revealed 10 metabolites. Morinidazole glucuronidation, followed by renal excretion, was the major elimination pathway, accounting for 35% of the dose. The metabolic pathway displayed regioselectivities and stereoselectivities. Unexpectedly, the nitrogen atom of the morpholine ring, rather than the aliphatic hydroxyl group at the side chain, was glucuronidated to form S-morinidazole glucuronide (M8-1) and R-enantiomer glucuronide (M8-2). The plasma exposure of M8-2 was 6-fold higher than that of M8-1, accounting for 22.9 and 3.96% of the parent drug exposure, respectively. Investigation of morinidazole glucuronidation using human liver microsomes (HLMs) and 12 recombinant UDP glucuronosyltransferases (UGTs) indicated that this biotransformation was mainly catalyzed by UGT1A9. A kinetic study showed that N+-glucuronidation of racemic morinidazole in both HLMs and in UGT1A9 obeyed a typical Michaelis-Menten plot. The Km values for M8-1 and M8-2 formation by HLMs were similar (11.3 and 15.1 mM), but the Vmax values were significantly different (111 and 1660 pmol · min−1 · mg protein−1). Overall, after an intravenous administration, morinidazole and its metabolites were eliminated in humans primarily via renal excretion. The major metabolites were two diastereoisomeric N+-glucuronides, and UGT1A9 played an important role in N+-glucuronidation.
Footnotes
This work was supported in part by the National Natural Science Foundation of China [Grant 81173117].
Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.
↵
The online version of this article (available at http://dmd.aspetjournals.org) contains supplemental material.
-
ABBREVIATIONS:
- N+-glucuronide
- quaternary ammonium-linked glucuronide
- UPLC
- ultraperformance liquid chromatography
- Q-TOF MS
- quadrupole time-of-flight mass spectrometer
- MDF
- mass defect filter
- UGT
- UDP glucuronosyltransferase
- UDPGA
- uridine 5′-diphosphoglucuronic acid
- DMSO
- dimethyl sulfoxide
- HLMs
- human liver microsomes
- NOESY
- nuclear Overhauser enhancement spectroscopy
- LC-MS/MS
- liquid chromatography-tandem mass spectrometry
- AUC
- area under the plasma concentration-time curve
- CE
- collision energy.
- Received September 6, 2011.
- Accepted December 19, 2011.
- Copyright © 2012 by The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|