Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Utility of Drug Depletion-Time Profiles in Isolated Hepatocytes for Accessing Hepatic Uptake Clearance: Identifying Rate-Limiting Steps and Role of Passive Processes

Emilie Jigorel and J. Brian Houston
Drug Metabolism and Disposition August 2012, 40 (8) 1596-1602; DOI: https://doi.org/10.1124/dmd.112.045732
Emilie Jigorel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Brian Houston
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Drug depletion-time profiles in isolated hepatocytes, as well as microsomes, have become a standard method of assessing hepatic metabolic clearance in vitro. There is a previously described adaptation of the depletion approach to allow determination of hepatic uptake by transporters in addition to metabolism (Drug Metab Dispos 35:859–865, 2007). Dual incubations are performed where one set of incubations undergo conventional methodology, whereas for the second set, cells and media are separated for determination of drug loss from the media. The utility of this dual incubation approach has been assessed using eight drugs (atorvastatin, clarithromycin, erythromycin, fexofenadine, pitavastatin, repaglinide, rosuvastatin, and saquinavir) with a range of active uptake, passive permeability, cell binding, and metabolic characteristics. Four of these compounds (fexofenadine, rosuvastatin, pitavastatin, and atorvastatin) show a biphasic time profile when assessing drug loss from media indicative of hepatic uptake before elimination within the hepatocyte, which is distinct from the time profile in a conventional incubation, and show higher clearances. The four other compounds (clarithromycin, saquinavir, erythromycin, and repaglinide) show identical depletion-time profiles (and clearances) in both sets of incubations. Whether or not the biphasic nature (and higher clearance) is evident, indicating transporter activity for a particular drug, appears to be dependent on its passive permeability. Using the parameter Kpu to reflect the relative importance of hepatic transporters versus passive diffusion, a value of 10 was identified as a cutoff for whether the biphasic nature was evident; those compounds in excess of 10 show this characteristic clearly. There appears to be no relationship between the presence of the biphasic nature and any other parameter, including cellular binding, extent of metabolism, or the magnitude of active uptake.

Footnotes

  • This work was supported by a consortium of pharmaceutical companies (GlaxoSmithKline, Lilly, Pfizer, and Servier) within the Centre of Applied Pharmacokinetic Research at the University of Manchester.

  • This work was previously published in part in the following publication: Jigorel E and Houston JB (2009) Involvement of drug uptake in hepatic clearance. Drug Metab Rev 41 (Suppl 1): 66.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

    http://dx.doi.org/10.1124/dmd.112.045732.

  • ABBREVIATIONS:

    CLactive
    clearance by active uptake
    CLmet
    clearance by metabolism
    CLobs
    observed in vitro clearance (either by uptake or by metabolism)
    CLuptake
    total uptake clearance by active and passive processes
    fucell
    fraction of unbound drug in the hepatocyte
    kdep
    initial depletion rate constant
    Kptotal
    tissue-to-medium total drug concentration ratio
    Kpu
    hepatocyte-to-medium unbound drug concentration ratio
    OATP
    organic anion transporter polypeptide
    Pdiff
    passive uptake clearance
    LC-MS/MS
    liquid chromatography-tandem mass spectrometry.

  • Received March 16, 2012.
  • Accepted May 16, 2012.
  • Copyright © 2012 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 40 (8)
Drug Metabolism and Disposition
Vol. 40, Issue 8
1 Aug 2012
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Utility of Drug Depletion-Time Profiles in Isolated Hepatocytes for Accessing Hepatic Uptake Clearance: Identifying Rate-Limiting Steps and Role of Passive Processes
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

DRUG DEPLETION AND HEPATIC UPTAKE CLEARANCE

Emilie Jigorel and J. Brian Houston
Drug Metabolism and Disposition August 1, 2012, 40 (8) 1596-1602; DOI: https://doi.org/10.1124/dmd.112.045732

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

DRUG DEPLETION AND HEPATIC UPTAKE CLEARANCE

Emilie Jigorel and J. Brian Houston
Drug Metabolism and Disposition August 1, 2012, 40 (8) 1596-1602; DOI: https://doi.org/10.1124/dmd.112.045732
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Humanized PXR-CAR-CYP3A4/7 Mouse as Model of Induction
  • Ozanimod Human Metabolism and Disposition
  • High-Throughput Characterization of SLCO1B1 VUS
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics