Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Rapid CommunicationSpecial Section on Epigenetic Regulation of Drug Metabolizing Enzymes and Transporters

Incubation of Whole Blood at Room Temperature Does Not Alter the Plasma Concentrations of MicroRNA-16 and -223

Eric A. Benson and Todd C. Skaar
Drug Metabolism and Disposition October 2013, 41 (10) 1778-1781; DOI: https://doi.org/10.1124/dmd.113.052357
Eric A. Benson
Indiana University School of Medicine, Division of Clinical Pharmacology, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Todd C. Skaar
Indiana University School of Medicine, Division of Clinical Pharmacology, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Plasma-derived microRNAs (miRNAs) are being used as biomarkers, and have been associated with human liver disease and function including fibrosis, inflammation, and drug-induced liver injury. They may also be biomarkers of the drug metabolism function of the liver. In order for plasma miRNA to function as a clinical biomarker, predictable variability is necessary during processing from whole blood to plasma. The current study evaluated the variability of miRNA in whole blood stored for 0.5, 1, 2, 4, 8, and 12 hours following the blood draw under clinical conditions (room temperature) prior to the separation of the plasma. Four healthy volunteers were recruited. Blood from all subjects was collected twice. MicroRNA-16 (miR-16) and miR-223 were evaluated because many studies have shown them to be reliably present in plasma and useful for normalization. miRNA concentrations were measured by real-time polymerase chain reaction. The coefficient of variability of the cycle threshold values for subjects for miR-223 and miR-16 ranged from ∼3.6 to 6.8% and ∼1.48 to 4.1%, respectively, over the 12-hour incubation. A second blood collection was performed to determine interday variability. The coefficient of variance from the initial blood draw compared with the final blood draw for each subject ranged from 0.42 to 7.9% for miR-16 and 1.7 to 8.3% for miR-223, indicating that these miRNAs have limited interday variability. We conclude that plasma miR-16 or miR-223 concentrations are stable in whole blood at room temperature for up to 12 hours.

Footnotes

    • Received April 12, 2013.
    • Accepted July 25, 2013.
  • This work was supported by grants from the National Institutes of Health Institute of General Medical Sciences [Grants T32GM008425-19 and RO1-GM088076]; and the Indiana University Institute of Personalized Medicine Brater Scholar award.

  • Part of this work was previously presented as: Benson EA and Skaar TC (2013) Analysis of the stability of MiRNA in whole blood. American Society for Clinical Pharmacology and Therapeutics; 2013 Mar 5–9; Indianapolis, IN. Abstract PI-1.

  • dx.doi.org/10.1124/dmd.113.052357.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 41 (10)
Drug Metabolism and Disposition
Vol. 41, Issue 10
1 Oct 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Incubation of Whole Blood at Room Temperature Does Not Alter the Plasma Concentrations of MicroRNA-16 and -223
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationSpecial Section on Epigenetic Regulation of Drug Metabolizing Enzymes and Transporters

Whole-Blood Stability of miRNA

Eric A. Benson and Todd C. Skaar
Drug Metabolism and Disposition October 1, 2013, 41 (10) 1778-1781; DOI: https://doi.org/10.1124/dmd.113.052357

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationSpecial Section on Epigenetic Regulation of Drug Metabolizing Enzymes and Transporters

Whole-Blood Stability of miRNA

Eric A. Benson and Todd C. Skaar
Drug Metabolism and Disposition October 1, 2013, 41 (10) 1778-1781; DOI: https://doi.org/10.1124/dmd.113.052357
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Rifampin Regulation of miRNAs
  • Epigenetics in Regulation of Drug Metabolism and Transport
Show more Special Section on Epigenetic Regulation of Drug Metabolizing Enzymes and Transporters

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics