Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleSpecial Section on Prediction of Human Pharmacokinetic Parameters from In Vitro Systems

Heterotropic Activation of the Midazolam Hydroxylase Activity of CYP3A by a Positive Allosteric Modulator of mGlu5: In Vitro to In Vivo Translation and Potential Impact on Clinically Relevant Drug-Drug Interactions

Anna L. Blobaum, Thomas M. Bridges, Frank W. Byers, Mark L. Turlington, Margrith E. Mattmann, Ryan D. Morrison, Claire Mackie, Hilde Lavreysen, José M. Bartolomé, Gregor J. MacDonald, Thomas Steckler, Carrie K. Jones, Colleen M. Niswender, P. Jeffrey Conn, Craig W. Lindsley, Shaun R. Stauffer and J. Scott Daniels
Drug Metabolism and Disposition December 2013, 41 (12) 2066-2075; DOI: https://doi.org/10.1124/dmd.113.052662
Anna L. Blobaum
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas M. Bridges
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frank W. Byers
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark L. Turlington
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Margrith E. Mattmann
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryan D. Morrison
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claire Mackie
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hilde Lavreysen
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
José M. Bartolomé
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregor J. MacDonald
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Steckler
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carrie K. Jones
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Colleen M. Niswender
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Jeffrey Conn
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Craig W. Lindsley
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shaun R. Stauffer
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Scott Daniels
Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Allosteric modulation of G protein-coupled receptors has gained considerable attention in the drug discovery arena because it opens avenues to achieve greater selectivity over orthosteric ligands. We recently identified a series of positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) for the treatment of schizophrenia that exhibited robust heterotropic activation of CYP3A4 enzymatic activity. The prototypical compound from this series, 5-(4-fluorobenzyl)-2-((3-fluorophenoxy)methyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine (VU0448187), was found to activate CYP3A4 to >100% of its baseline intrinsic midazolam (MDZ) hydroxylase activity in vitro; activation was CYP3A substrate specific and mGlu5 PAM dependent. Additional studies revealed the concentration-dependence of CYP3A activation by VU0448187 in multispecies hepatic and intestinal microsomes and hepatocytes, as well as a diminished effect observed in the presence of ketoconazole. Kinetic analyses of the effect of VU0448187 on MDZ metabolism in recombinant P450 or human liver microsomes resulted in a significant increase in Vmax (minimal change in Km) and required the presence of cytochrome b5. The atypical kinetics translated in vivo, as rats receiving an intraperitoneal administration of VU0448187 prior to MDZ treatment demonstrated a significant increase in circulating 1- and 4-hydroxy- midazolam (1-OH-MDZ, 4-OH-MDZ) levels compared with rats administered MDZ alone. The discovery of a potent substrate-selective activator of rodent CYP3A with an in vitro to in vivo translation serves to illuminate the impact of increasing intrinsic enzymatic activity of hepatic and extrahepatic CYP3A in rodents, and presents the basis to build models capable of framing the clinical relevance of substrate-dependent heterotropic activation.

Footnotes

    • Received May 2, 2013.
    • Accepted August 30, 2013.
  • This research was supported in part by the National Institutes of Health National Institute of Mental Health [Grants R01-MH062646 and R01-MH89870] and the National Institutes of Health National Institute of Neurological Disorders and Stroke [Grant R01-NS031373]; and an industry-sponsored contract from Johnson & Johnson.

  • dx.doi.org/10.1124/dmd.113.052662.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 41 (12)
Drug Metabolism and Disposition
Vol. 41, Issue 12
1 Dec 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Heterotropic Activation of the Midazolam Hydroxylase Activity of CYP3A by a Positive Allosteric Modulator of mGlu5: In Vitro to In Vivo Translation and Potential Impact on Clinically Relevant Drug-Drug Interactions
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleSpecial Section on Prediction of Human Pharmacokinetic Parameters from In Vitro Systems

Heterotropic Activation of CYP3A by a Novel mGlu5 PAM

Anna L. Blobaum, Thomas M. Bridges, Frank W. Byers, Mark L. Turlington, Margrith E. Mattmann, Ryan D. Morrison, Claire Mackie, Hilde Lavreysen, José M. Bartolomé, Gregor J. MacDonald, Thomas Steckler, Carrie K. Jones, Colleen M. Niswender, P. Jeffrey Conn, Craig W. Lindsley, Shaun R. Stauffer and J. Scott Daniels
Drug Metabolism and Disposition December 1, 2013, 41 (12) 2066-2075; DOI: https://doi.org/10.1124/dmd.113.052662

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleSpecial Section on Prediction of Human Pharmacokinetic Parameters from In Vitro Systems

Heterotropic Activation of CYP3A by a Novel mGlu5 PAM

Anna L. Blobaum, Thomas M. Bridges, Frank W. Byers, Mark L. Turlington, Margrith E. Mattmann, Ryan D. Morrison, Claire Mackie, Hilde Lavreysen, José M. Bartolomé, Gregor J. MacDonald, Thomas Steckler, Carrie K. Jones, Colleen M. Niswender, P. Jeffrey Conn, Craig W. Lindsley, Shaun R. Stauffer and J. Scott Daniels
Drug Metabolism and Disposition December 1, 2013, 41 (12) 2066-2075; DOI: https://doi.org/10.1124/dmd.113.052662
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Drug Metabolites as Cytochrome P450 Inhibitors
  • Impact of PBPK Modeling and Simulation in Drug Development
  • Prediction of Human Intestinal First-Pass Metabolism
Show more Special Section on Prediction of Human Pharmacokinetic Parameters from In Vitro Systems

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics