Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

RBCK1, an E3 Ubiquitin Ligase, Interacts with and Ubiquinates the Human Pregnane X Receptor

Ritu Rana, Sherry Coulter, Harriet Kinyamu and Joyce A. Goldstein
Drug Metabolism and Disposition February 2013, 41 (2) 398-405; DOI: https://doi.org/10.1124/dmd.112.048728
Ritu Rana
Laboratory of Toxicology and Pharmacology (R.R., S.C., J.A.G.), Laboratory of Molecular Carcinogenesis (H.K.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sherry Coulter
Laboratory of Toxicology and Pharmacology (R.R., S.C., J.A.G.), Laboratory of Molecular Carcinogenesis (H.K.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Harriet Kinyamu
Laboratory of Toxicology and Pharmacology (R.R., S.C., J.A.G.), Laboratory of Molecular Carcinogenesis (H.K.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joyce A. Goldstein
Laboratory of Toxicology and Pharmacology (R.R., S.C., J.A.G.), Laboratory of Molecular Carcinogenesis (H.K.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The pregnane X receptor (PXR, NR1I2) plays a pivotal role in the disposition and detoxification of numerous foreign and endogenous chemicals by increasing transcription of numerous target genes, including phase I and II drug-metabolizing enzymes and transporters. In the present study, yeast two-hybrid screening identified an E3 ubiquitin ligase, RBCK1 (Ring-B-box-coiled-coil protein interacting with protein kinase C-1), as a human pregnane X receptor (hPXR)–interacting protein. Coimmunoprecipitation studies confirmed the interaction between RBCK1 and hPXR when both were ectopically expressed in AD-293 cells. Domain mapping studies showed that the interaction between RBCK1 and hPXR involves all RBCK1 domains. We further demonstrate that RBCK1 ubiquitinates hPXR, and this may target hPXR for degradation by the ubiquitin-proteasome pathway. Simultaneous ectopic overexpression of RBCK1 and PXR decreased PXR levels in AD-293 cells, and this decrease was inhibited by the proteasomal inhibitor MG-132 (carbobenzoxy-Leu-Leu-leucinal). Furthermore, overexpression of RBCK1 decreased endogenous levels of PXR in HepG2 cells. Of importance, ectopic overexpression and silencing of endogenous RBCK1 in primary human hepatocytes resulted in a decrease and increase, respectively, in endogenous PXR protein levels and in the induction of PXR target genes by rifampicin. These results suggest that RBCK1 is important for the ubiquitination of PXR and may play a role in its proteasomal degradation.

Footnotes

  • This research was supported by the Intramural Research Program of the National Institutes of Health National Institute of Environmental Health Sciences [Grants Z01ES02124 and Z01ES071006-12].

  • dx.doi.org/10.1124/dmd.112.048728.

  • Received August 30, 2012.
  • Accepted October 13, 2012.
  • Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 41 (2)
Drug Metabolism and Disposition
Vol. 41, Issue 2
1 Feb 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
RBCK1, an E3 Ubiquitin Ligase, Interacts with and Ubiquinates the Human Pregnane X Receptor
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

An E3 Ligase RBCK1 Ubiquinates hPXR

Ritu Rana, Sherry Coulter, Harriet Kinyamu and Joyce A. Goldstein
Drug Metabolism and Disposition February 1, 2013, 41 (2) 398-405; DOI: https://doi.org/10.1124/dmd.112.048728

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

An E3 Ligase RBCK1 Ubiquinates hPXR

Ritu Rana, Sherry Coulter, Harriet Kinyamu and Joyce A. Goldstein
Drug Metabolism and Disposition February 1, 2013, 41 (2) 398-405; DOI: https://doi.org/10.1124/dmd.112.048728
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • AKRs and GUSs in Testosterone Disposition
  • Olanzapine Glucuronidation in Humanized Mice
  • rs2242480 Regulates the Expression of CYP3A4 and CYP3A5
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics