Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Investigating the Enteroenteric Recirculation of Apixaban, a Factor Xa Inhibitor: Administration of Activated Charcoal to Bile Duct-Cannulated Rats and Dogs Receiving an Intravenous Dose and Use of Drug Transporter Knockout Rats

Donglu Zhang, Charles E. Frost, Kan He, A. David Rodrigues, Xiaoli Wang, Lifei Wang, Theunis C. Goosen and W. Griffith Humphreys
Drug Metabolism and Disposition April 2013, 41 (4) 906-915; DOI: https://doi.org/10.1124/dmd.112.050575
Donglu Zhang
Bristol-Myers Squibb, Princeton, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles E. Frost
Bristol-Myers Squibb, Princeton, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kan He
Bristol-Myers Squibb, Princeton, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. David Rodrigues
Bristol-Myers Squibb, Princeton, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaoli Wang
Bristol-Myers Squibb, Princeton, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lifei Wang
Bristol-Myers Squibb, Princeton, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Theunis C. Goosen
Bristol-Myers Squibb, Princeton, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. Griffith Humphreys
Bristol-Myers Squibb, Princeton, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The study described here investigated the impact of intestinal excretion (IE; excretion of drug directly from circulation to intestinal lumen), enteroenteric recirculation (EER), and renal tubule recirculation (RTR) on apixaban pharmacokinetics and disposition. The experimental approaches involve integrating apixaban elimination pathways with pharmacokinetic profiles obtained from bile duct-cannulated (BDC) rats and dogs receiving i.v. doses together with oral administration of activated charcoal (AC). Additionally, the role of P-gp (P-glycoprotein; abcb1) and BCRP (breast cancer resistance protein; abcg2) in apixaban disposition was evaluated in experiments using transporter inhibitors and transporter knockout (KO) rats. Approximately 20–50% of an apixaban i.v. dose was found in feces of BDC rats and dogs, suggesting IE leading to fecal elimination and intestinal clearance (IC). The fecal elimination, IC, and systemic clearance of apixaban were increased upon AC administration in both BDC rats and dogs and were decreased in BDC rats dosed with GF-120918, a dual BCRP and P-gp inhibitor). BCRP appeared to play a more important role for absorption and intestinal and renal elimination of apixaban than P-gp in transporter-KO rats after oral and i.v. dosing, which led to a higher level of active renal excretion in rat than other species. These data demonstrate that apixaban undergoes IE, EER, and RTR that are facilitated by efflux transporters. Intestinal reabsorption of apixaban could be interrupted by AC even at 3 hours post-drug dose in dogs (late charcoal effect). This study demonstrates that the intestine is an organ for direct clearance and redistribution of apixaban. The IE, EER, and RTR contribute to overall pharmacokinetic profiles of apixaban. IE as a clearance pathway, balanced with metabolism and renal excretion, helps decrease the impacts of intrinsic (renal or hepatic impairment) and extrinsic (drug-drug interactions) factors on apixaban disposition.

Footnotes

  • This work was supported by Pharmaceutical Candidate Optimization (D.Z., K.H., A.D.R., L.W., W.G.H.), Discovery Medicine and Clinical Pharmacology (C.E.F., X.W.), Bristol-Myers Squibb; and Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development (T.C.G.).

  • dx.doi.org/10.1124/dmd.112.050575.

  • Received December 5, 2012.
  • Accepted February 5, 2013.
  • Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 41 (4)
Drug Metabolism and Disposition
Vol. 41, Issue 4
1 Apr 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Investigating the Enteroenteric Recirculation of Apixaban, a Factor Xa Inhibitor: Administration of Activated Charcoal to Bile Duct-Cannulated Rats and Dogs Receiving an Intravenous Dose and Use of Drug Transporter Knockout Rats
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Enteroenteric and Renal Tubule Recirculation of Apixaban

Donglu Zhang, Charles E. Frost, Kan He, A. David Rodrigues, Xiaoli Wang, Lifei Wang, Theunis C. Goosen and W. Griffith Humphreys
Drug Metabolism and Disposition April 1, 2013, 41 (4) 906-915; DOI: https://doi.org/10.1124/dmd.112.050575

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Enteroenteric and Renal Tubule Recirculation of Apixaban

Donglu Zhang, Charles E. Frost, Kan He, A. David Rodrigues, Xiaoli Wang, Lifei Wang, Theunis C. Goosen and W. Griffith Humphreys
Drug Metabolism and Disposition April 1, 2013, 41 (4) 906-915; DOI: https://doi.org/10.1124/dmd.112.050575
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Gadoxetate-enhanced MRI and FXR in benign tumours
  • In vitro DDI assessment of peptide analogues
  • Endogenous substrates of rat organic cation transporters
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics