Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Rapid CommunicationAccelerated Communication

Rapid Production of Novel Pre-MicroRNA Agent hsa-mir-27b in Escherichia coli Using Recombinant RNA Technology for Functional Studies in Mammalian Cells

Mei-Mei Li, Wei-Peng Wang, Wen-Juan Wu, Min Huang and Ai-Ming Yu
Drug Metabolism and Disposition November 2014, 42 (11) 1791-1795; DOI: https://doi.org/10.1124/dmd.114.060145
Mei-Mei Li
Department of Biochemistry and Molecular Medicine, University of California Davis Medical Center, Sacramento, California (M.-M.L., W.-P.W., W.-J.W., A.-M.Y.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China (M.-M.L., M.H.); and Center of Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China (W.-P.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wei-Peng Wang
Department of Biochemistry and Molecular Medicine, University of California Davis Medical Center, Sacramento, California (M.-M.L., W.-P.W., W.-J.W., A.-M.Y.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China (M.-M.L., M.H.); and Center of Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China (W.-P.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wen-Juan Wu
Department of Biochemistry and Molecular Medicine, University of California Davis Medical Center, Sacramento, California (M.-M.L., W.-P.W., W.-J.W., A.-M.Y.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China (M.-M.L., M.H.); and Center of Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China (W.-P.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Min Huang
Department of Biochemistry and Molecular Medicine, University of California Davis Medical Center, Sacramento, California (M.-M.L., W.-P.W., W.-J.W., A.-M.Y.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China (M.-M.L., M.H.); and Center of Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China (W.-P.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ai-Ming Yu
Department of Biochemistry and Molecular Medicine, University of California Davis Medical Center, Sacramento, California (M.-M.L., W.-P.W., W.-J.W., A.-M.Y.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China (M.-M.L., M.H.); and Center of Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China (W.-P.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Noncoding microRNAs (miRNAs or miRs) have been revealed as critical epigenetic factors in the regulation of various cellular processes, including drug metabolism and disposition. However, research on miRNA functions is limited to the use of synthetic RNA and recombinant DNA agents. Herein, we show that novel pre-miRNA-27b (miR-27b) agents can be biosynthesized in Escherichia coli using recombinant RNA technology, and recombinant transfer RNA (tRNA)/mir-27b chimera was readily purified to a high degree of homogeneity (>95%) using anion-exchange fast protein liquid chromatography. The tRNA-fusion miR-27b was revealed to be processed to mature miRNA miR-27b in human carcinoma LS-180 cells in a dose- and time-dependent manner. Moreover, recombinant tRNA/miR-27b agents were biologically active in reducing the mRNA and protein expression levels of cytochrome P450 3A4 (CYP3A4), which consequently led to lower midazolam 1′-hydroxylase activity. These findings demonstrate that pre-miRNA agents can be produced by recombinant RNA technology for functional studies.

Footnotes

    • Received July 29, 2014.
    • Accepted August 25, 2014.
  • This project was supported in part by the National Institutes of Health National Cancer Institute [Grant 1U01-CA17531 to A.M.Y.] and the Natural Science Foundation of China [81320108027 to M.H.].

  • dx.doi.org/10.1124/dmd.114.060145.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 42 (11)
Drug Metabolism and Disposition
Vol. 42, Issue 11
1 Nov 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Rapid Production of Novel Pre-MicroRNA Agent hsa-mir-27b in Escherichia coli Using Recombinant RNA Technology for Functional Studies in Mammalian Cells
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationAccelerated Communication

Production of Recombinant hsa-mir-27b

Mei-Mei Li, Wei-Peng Wang, Wen-Juan Wu, Min Huang and Ai-Ming Yu
Drug Metabolism and Disposition November 1, 2014, 42 (11) 1791-1795; DOI: https://doi.org/10.1124/dmd.114.060145

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationAccelerated Communication

Production of Recombinant hsa-mir-27b

Mei-Mei Li, Wei-Peng Wang, Wen-Juan Wu, Min Huang and Ai-Ming Yu
Drug Metabolism and Disposition November 1, 2014, 42 (11) 1791-1795; DOI: https://doi.org/10.1124/dmd.114.060145
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Use of CYP Transgenic Mouse Models
  • Nonlinear Metabolite Kinetics of Verapamil
Show more Accelerated Communication

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics