Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Enzyme-Transporter Interplay in the Formation and Clearance of Abundant Metabolites of Faldaprevir Found in Excreta but not in Circulation

Yongmei Li, Jin Zhou, Diane Ramsden, Mitchell E. Taub, Drané O'Brien, Jun Xu, Carl A. Busacca, Nina Gonnella and Donald J. Tweedie
Drug Metabolism and Disposition March 2014, 42 (3) 384-393; DOI: https://doi.org/10.1124/dmd.113.055863
Yongmei Li
Drug Metabolism & Pharmacokinetics (Y.L., J.Z., D.R., M.E.T., D.O., J.X., D.J.T.), Chemical Development (C.A.B.), and Analytical Development (N.G.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jin Zhou
Drug Metabolism & Pharmacokinetics (Y.L., J.Z., D.R., M.E.T., D.O., J.X., D.J.T.), Chemical Development (C.A.B.), and Analytical Development (N.G.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Diane Ramsden
Drug Metabolism & Pharmacokinetics (Y.L., J.Z., D.R., M.E.T., D.O., J.X., D.J.T.), Chemical Development (C.A.B.), and Analytical Development (N.G.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mitchell E. Taub
Drug Metabolism & Pharmacokinetics (Y.L., J.Z., D.R., M.E.T., D.O., J.X., D.J.T.), Chemical Development (C.A.B.), and Analytical Development (N.G.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Drané O'Brien
Drug Metabolism & Pharmacokinetics (Y.L., J.Z., D.R., M.E.T., D.O., J.X., D.J.T.), Chemical Development (C.A.B.), and Analytical Development (N.G.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jun Xu
Drug Metabolism & Pharmacokinetics (Y.L., J.Z., D.R., M.E.T., D.O., J.X., D.J.T.), Chemical Development (C.A.B.), and Analytical Development (N.G.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carl A. Busacca
Drug Metabolism & Pharmacokinetics (Y.L., J.Z., D.R., M.E.T., D.O., J.X., D.J.T.), Chemical Development (C.A.B.), and Analytical Development (N.G.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nina Gonnella
Drug Metabolism & Pharmacokinetics (Y.L., J.Z., D.R., M.E.T., D.O., J.X., D.J.T.), Chemical Development (C.A.B.), and Analytical Development (N.G.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donald J. Tweedie
Drug Metabolism & Pharmacokinetics (Y.L., J.Z., D.R., M.E.T., D.O., J.X., D.J.T.), Chemical Development (C.A.B.), and Analytical Development (N.G.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Faldaprevir is a hepatitis C virus protease inhibitor that effectively reduces viral load in patients. Since faldaprevir exhibits slow metabolism in vitro and low clearance in vivo, metabolism was expected to be a minor clearance pathway. The human [14C] absorption, distribution, metabolism, and excretion study revealed that two monohydroxylated metabolites (M2a and M2b) were the most abundant excretory metabolites in feces, constituting 41% of the total administered dose. To deconvolute the formation and disposition of M2a and M2b in humans and determine why the minor change in structure [the addition of 16 atomic mass units (amu)] produced chemical entities that were excreted and were not present in the circulation, multiple in vitro test systems were used. The results from these in vitro studies clarified the formation and clearance of M2a and M2b. Faldaprevir is metabolized primarily in the liver by CYP3A4/5 to form M2a and M2b, which are also substrates of efflux transporters (P-glycoprotein and breast cancer resistance protein). The role of transporters is considered important for M2a and M2b as they demonstrate low permeability. It is proposed that both metabolites are efficiently excreted via bile into feces and do not enter the systemic circulation to an appreciable extent. If these metabolites permeate to blood, they can be readily taken up into hepatocytes from the circulation by uptake transporters (likely organic anion transporting polypeptides). These results highlight the critical role of drug-metabolizing enzymes and multiple transporters in the process of the formation and clearance of faldaprevir metabolites. Faldaprevir metabolism also provides an interesting case study for metabolites that are exclusively excreted in feces but are of clinical relevance.

Footnotes

    • Received November 8, 2013.
    • Accepted December 17, 2013.
  • This research was funded by Boehringer Ingelheim Pharmaceuticals, Inc.

  • dx.doi.org/10.1124/dmd.113.055863.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 42 (3)
Drug Metabolism and Disposition
Vol. 42, Issue 3
1 Mar 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Enzyme-Transporter Interplay in the Formation and Clearance of Abundant Metabolites of Faldaprevir Found in Excreta but not in Circulation
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Effect of Enzyme-Transporter Interplay on FDV Metabolism

Yongmei Li, Jin Zhou, Diane Ramsden, Mitchell E. Taub, Drané O'Brien, Jun Xu, Carl A. Busacca, Nina Gonnella and Donald J. Tweedie
Drug Metabolism and Disposition March 1, 2014, 42 (3) 384-393; DOI: https://doi.org/10.1124/dmd.113.055863

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Effect of Enzyme-Transporter Interplay on FDV Metabolism

Yongmei Li, Jin Zhou, Diane Ramsden, Mitchell E. Taub, Drané O'Brien, Jun Xu, Carl A. Busacca, Nina Gonnella and Donald J. Tweedie
Drug Metabolism and Disposition March 1, 2014, 42 (3) 384-393; DOI: https://doi.org/10.1124/dmd.113.055863
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Role of Human MSRA on Sulindac Activation
  • Determination of Acyl-, O-, and N-Glucuronide
  • TMDD Affects PK of IL-10 Fc-fusion Proteins
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics