Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleSpecial Section on Transporters in Toxicity and Disease

Regulation of the Function of the Human ABCG2 Multidrug Transporter by Cholesterol and Bile Acids: Effects of Mutations in Potential Substrate and Steroid Binding Sites

Ágnes Telbisz, Csilla Hegedüs, András Váradi, Balázs Sarkadi and Csilla Özvegy-Laczka
Drug Metabolism and Disposition April 2014, 42 (4) 575-585; DOI: https://doi.org/10.1124/dmd.113.055731
Ágnes Telbisz
Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences (A.T., B.S.); Molecular Biophysics Research Group, Hungarian Academy of Sciences and Semmelweis University (C.H.); and Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences (A.V., C.O.-L.), Budapest, Hungary
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Csilla Hegedüs
Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences (A.T., B.S.); Molecular Biophysics Research Group, Hungarian Academy of Sciences and Semmelweis University (C.H.); and Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences (A.V., C.O.-L.), Budapest, Hungary
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
András Váradi
Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences (A.T., B.S.); Molecular Biophysics Research Group, Hungarian Academy of Sciences and Semmelweis University (C.H.); and Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences (A.V., C.O.-L.), Budapest, Hungary
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Balázs Sarkadi
Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences (A.T., B.S.); Molecular Biophysics Research Group, Hungarian Academy of Sciences and Semmelweis University (C.H.); and Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences (A.V., C.O.-L.), Budapest, Hungary
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Csilla Özvegy-Laczka
Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences (A.T., B.S.); Molecular Biophysics Research Group, Hungarian Academy of Sciences and Semmelweis University (C.H.); and Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences (A.V., C.O.-L.), Budapest, Hungary
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

ABCG2 (ATP-binding cassette, subfamily G, member 2) is a plasma membrane glycoprotein that actively extrudes xenobiotics and endobiotics from the cells and causes multidrug resistance in cancer. In the liver, ABCG2 is expressed in the canalicular membrane of hepatocytes and excretes its substrates into the bile. ABCG2 is known to require high membrane cholesterol content for maximal activity, and by examining purified ABCG2 reconstituted in proteoliposomes we have recently shown that cholesterol is an essential activator, while bile acids significantly modify the activity of this protein. In the present work, by using isolated insect cell membrane preparations expressing human ABCG2 and its mutant variants, we have analyzed whether certain regions in this protein are involved in sterol recognition. We found that replacing ABCG2-R482 with large amino acids does not affect cholesterol dependence, but changes to small amino acids cause altered cholesterol sensitivity. When leucines in the potential steroid-binding element (SBE, aa 555–558) of ABCG2 were replaced by alanines, cholesterol dependence of ABCG2 activity was strongly reduced, although the L558A mutant variant when purified and reconstituted still required cholesterol for full activity. Regarding the effect of bile acids in isolated membranes, we found that these compounds decreased ABCG2-ATPase in the absence of drug substrates, which did not significantly affect substrate-stimulated ATPase activity. These ABCG2 mutant variants also altered bile acid sensitivity, although cholic acid and glycocholate were not transported by the protein. We suggest that the aforementioned two regions in ABCG2 are important for sterol sensing and may represent potential targets for pharmacologic modulation of ABCG2 function.

Footnotes

    • Received November 1, 2013.
    • Accepted January 2, 2014.
  • This work was supported by the Hungarian Research Fund grant [NK 83533], and grants from KMOP-1.1.2-07/1-2008-0003, NKTH-STEMKILL, and NIH-ARD ACHILLES.

  • dx.doi.org/10.1124/dmd.113.055731.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 42 (4)
Drug Metabolism and Disposition
Vol. 42, Issue 4
1 Apr 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of the Function of the Human ABCG2 Multidrug Transporter by Cholesterol and Bile Acids: Effects of Mutations in Potential Substrate and Steroid Binding Sites
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleSpecial Section on Transporters in Toxicity and Disease

Sterol Modulation of ABCG2 Function

Ágnes Telbisz, Csilla Hegedüs, András Váradi, Balázs Sarkadi and Csilla Özvegy-Laczka
Drug Metabolism and Disposition April 1, 2014, 42 (4) 575-585; DOI: https://doi.org/10.1124/dmd.113.055731

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleSpecial Section on Transporters in Toxicity and Disease

Sterol Modulation of ABCG2 Function

Ágnes Telbisz, Csilla Hegedüs, András Váradi, Balázs Sarkadi and Csilla Özvegy-Laczka
Drug Metabolism and Disposition April 1, 2014, 42 (4) 575-585; DOI: https://doi.org/10.1124/dmd.113.055731
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Novel Strategies to Inhibit P-Glycoprotein
  • Organic Anion Transporters and Liver Imaging Markers
  • Biology and Therapy of Facilitative Folate Transporters
Show more Special Section on Transporters in Toxicity and Disease

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics