Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Metabolic Activation of the Indoloquinazoline Alkaloids Evodiamine and Rutaecarpine by Human Liver Microsomes: Dehydrogenation and Inactivation of Cytochrome P450 3A4

Bo Wen, Vikram Roongta, Liling Liu and David J. Moore
Drug Metabolism and Disposition June 2014, 42 (6) 1044-1054; DOI: https://doi.org/10.1124/dmd.114.057414
Bo Wen
Drug Metabolism, Non-Clinical Safety (B.W., L.L., D.J.M.) and Discovery Chemistry (V.R.), Hoffmann-La Roche, Nutley, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vikram Roongta
Drug Metabolism, Non-Clinical Safety (B.W., L.L., D.J.M.) and Discovery Chemistry (V.R.), Hoffmann-La Roche, Nutley, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Liling Liu
Drug Metabolism, Non-Clinical Safety (B.W., L.L., D.J.M.) and Discovery Chemistry (V.R.), Hoffmann-La Roche, Nutley, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David J. Moore
Drug Metabolism, Non-Clinical Safety (B.W., L.L., D.J.M.) and Discovery Chemistry (V.R.), Hoffmann-La Roche, Nutley, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Evodiamine and rutaecarpine are the main active indoloquinazoline alkaloids of the herbal medicine Evodia rutaecarpa, which is widely used for the treatment of hypertension, abdominal pain, angina pectoris, gastrointestinal disorder, and headache. Immunosuppressive effects and acute toxicity were reported in mice treated with evodiamine and rutaecarpine. Although the mechanism remains unknown, it is proposed that metabolic activation of the indoloquinazoline alkaloids and subsequent covalent binding of reactive metabolites to cellular proteins play a causative role. Liquid chromatography–tandem mass spectrometry analysis of incubations containing evodiamine and NADPH-supplemented microsomes in the presence of glutathione (GSH) revealed formation of a major GSH conjugate which was subsequently indentified as a benzylic thioether adduct on the C-8 position of evodiamine by NMR analysis. Several other GSH conjugates were also detected, including conjugates of oxidized and demethylated metabolites of evodiamine. Similar GSH conjugates were formed in incubations with rutaecarpine. These findings are consistent with a bioactivation sequence involving initial cytochrome P450–catalyzed dehydrogenation of the 3-alkylindole moiety in evodiamine and rutaecarpine to an electrophile 3-methyleneindolenine. Formation of the evodiamine and rutaecarpine GSH conjugates was primarily catalyzed by heterologously expressed recombinant CYP3A4 and, to a lesser extent, CYP1A2 and CYP2D6, respectively. It was found that the 3-methyleneindolenine or another reactive intermediate was a mechanism-based inactivator of CYP3A4, with inactivation parameters KI = 29 µM and kinact = 0.029 minute−1, respectively. In summary, these findings are of significance in understanding the bioactivation mechanisms of indoloquinazoline alkaloids, and dehydrogenation of evodiamine and rutaecarpine may cause toxicities through formation of electrophilic intermediates and lead to drug-drug interactions mainly via CYP3A4 inactivation.

Footnotes

    • Received February 7, 2014.
    • Accepted April 2, 2014.
  • dx.doi.org/10.1124/dmd.114.057414.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 42 (6)
Drug Metabolism and Disposition
Vol. 42, Issue 6
1 Jun 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolic Activation of the Indoloquinazoline Alkaloids Evodiamine and Rutaecarpine by Human Liver Microsomes: Dehydrogenation and Inactivation of Cytochrome P450 3A4
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Bioactivation of Indoloquinazoline Alkaloids

Bo Wen, Vikram Roongta, Liling Liu and David J. Moore
Drug Metabolism and Disposition June 1, 2014, 42 (6) 1044-1054; DOI: https://doi.org/10.1124/dmd.114.057414

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Bioactivation of Indoloquinazoline Alkaloids

Bo Wen, Vikram Roongta, Liling Liu and David J. Moore
Drug Metabolism and Disposition June 1, 2014, 42 (6) 1044-1054; DOI: https://doi.org/10.1124/dmd.114.057414
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Metabolic enzymes in nintedanib metabolism
  • Mechanism of AO Inactivation by Hydralazine
  • Warfarin PBPK modeling with target binding
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics