Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Differential Effects of Rifampin and Ketoconazole on the Blood and Liver Concentration of Atorvastatin in Wild-Type and Cyp3a and Oatp1a/b Knockout Mice

Jae H. Chang, Justin Ly, Emile Plise, Xiaolin Zhang, Kirsten Messick, Matthew Wright and Jonathan Cheong
Drug Metabolism and Disposition June 2014, 42 (6) 1067-1073; DOI: https://doi.org/10.1124/dmd.114.057968
Jae H. Chang
Department of Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Justin Ly
Department of Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emile Plise
Department of Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaolin Zhang
Department of Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kirsten Messick
Department of Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew Wright
Department of Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonathan Cheong
Department of Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Atorvastatin is eliminated by CYP3A4 which follows carrier-mediated uptake into hepatocytes by OATP1B1, OATP1B3, and OATP2B1. Multiple clinical studies demonstrated that OATP inhibition by rifampin had a greater impact on atorvastatin systemic concentration than itraconazole-mediated CYP3A4 inhibition. If it is assumed that the blood and hepatocyte compartments are differentiated by the concentration gradient that is established by OATPs, and if the rate of uptake into the hepatocyte is rate-determining to the elimination of atorvastatin from the body, then it is hypothesized that blood concentrations may not necessarily reflect liver concentrations. In wild-type mice, rifampin had a greater effect on systemic exposure of atorvastatin than ketoconazole, as the blood area under the blood concentration-time curve increased 7- and 2-fold, respectively. In contrast, liver concentrations were affected more by ketoconazole than by rifampin, as liver levels increased 21- and 4-fold, respectively. Similarly, in Cyp3a knockout animals, 39-fold increases in liver concentrations were observed despite insignificant changes in the blood area under the blood concentration-time curve. Interestingly, blood and liver levels in Oatp1a/b knockout animals were similar to wild types, suggesting that Oatp1a/b knockout may be necessary but not sufficient to completely describe atorvastatin uptake in mice. Data presented in this work indicate that there is a substantial drug interaction when blocking atorvastatin metabolism, but the effects of this interaction are predominantly manifested in the liver and may not be captured when monitoring changes in the systemic circulation. Consequently, there may be a disconnect when trying to relate blood exposure to instances of hepatotoxicity because a pharmacokinetic-toxicity relationship may not be obvious from blood concentrations.

Footnotes

    • Received March 5, 2014.
    • Accepted March 26, 2014.
  • dx.doi.org/10.1124/dmd.114.057968.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 42 (6)
Drug Metabolism and Disposition
Vol. 42, Issue 6
1 Jun 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential Effects of Rifampin and Ketoconazole on the Blood and Liver Concentration of Atorvastatin in Wild-Type and Cyp3a and Oatp1a/b Knockout Mice
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Varying Effects of OATP and CYP3A Inhibition on Atorvastatin

Jae H. Chang, Justin Ly, Emile Plise, Xiaolin Zhang, Kirsten Messick, Matthew Wright and Jonathan Cheong
Drug Metabolism and Disposition June 1, 2014, 42 (6) 1067-1073; DOI: https://doi.org/10.1124/dmd.114.057968

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Varying Effects of OATP and CYP3A Inhibition on Atorvastatin

Jae H. Chang, Justin Ly, Emile Plise, Xiaolin Zhang, Kirsten Messick, Matthew Wright and Jonathan Cheong
Drug Metabolism and Disposition June 1, 2014, 42 (6) 1067-1073; DOI: https://doi.org/10.1124/dmd.114.057968
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Metabolic enzymes in nintedanib metabolism
  • Mechanism of AO Inactivation by Hydralazine
  • Warfarin PBPK modeling with target binding
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics