Abstract
We hypothesized that treatment of pregnant rat dams with a dual reactive monoclonal antibody (mAb4G9) against (+)-methamphetamine [METH; equilibrium dissociation rate constant (KD) = 16 nM] and (+)-amphetamine (AMP; KD = 102 nM) could confer maternal and fetal protection from brain accumulation of both drugs of abuse. To test this hypothesis, pregnant Sprague-Dawley rats (on gestational day 21) received a 1 mg/kg i.v. METH dose, followed 30 minutes later by vehicle or mAb4G9 treatment. The mAb4G9 dose was 0.56 mole-equivalent in binding sites to the METH body burden. Pharmacokinetic analysis showed baseline METH and AMP elimination half-lives were congruent in dams and fetuses, but the METH volume of distribution in dams was nearly double the fetal values. The METH and AMP area under the serum concentration-versus-time curves from 40 minutes to 5 hours after mAb4G9 treatment increased >7000% and 2000%, respectively, in dams. Fetal METH serum
did not change, but AMP
decreased 23%. The increased METH and AMP concentrations in maternal serum resulted from significant increases in mAb4G9 binding. Protein binding changed from ∼15% to > 90% for METH and AMP. Fetal serum protein binding appeared to gradually increase, but the absolute fraction bound was trivial compared with the dams. mAb4G9 treatment significantly reduced METH and AMP brain
values by 66% and 45% in dams and 44% and 46% in fetuses (P < 0.05), respectively. These results show anti-METH/AMP mAb4G9 therapy in dams can offer maternal and fetal brain protection from the potentially harmful effects of METH and AMP.
Footnotes
- Received January 6, 2014.
- Accepted May 19, 2014.
This work was supported by the National Institutes of Health National Institute on Drug Abuse [Grants DA07610 (to S.M.O.), DA11560 (to S.M.O.), F30 DA029372 (to W.T.A.)]; a GlaxoSmithKline Graduate Fellowship in Pharmacokinetics (to S.J.W.); and the National Center for Advancing Translational Sciences [Grant UL1TR000039 (to S.M.O.)].
Statement of conflicts of interest: S.M.O. and W.B.G. have financial interests in and serve as Chief Scientific Officer and Chief Medical Officer of InterveXion Therapeutics LLC (Little Rock, AR), a pharmaceutical biotechnology company focused on treating human drug addiction with antibody-based therapies.
- Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|