Abstract
The purpose of this study was to characterize the hepatobiliary disposition of timosaponin B2 (TB-2), a natural saponin. Although TB-2 has multiple pharmacologic activities, the mechanism of its hepatobiliary disposition has not been explored. Because the metabolism of TB-2 is limited and the accumulation of TB-2 in primary hepatocytes is highly temperature dependent (93% of its accumulation is due to active uptake), the contribution of hepatic transporters was investigated. Organic anion-transporting polypeptide (OATP) 1B1– and OATP1B3-transfected human embryonic kidney 293 cells were employed. TB-2 serves as a substrate for OATP1B1 and OATP1B3, with the former playing a predominant role in the hepatic uptake of TB-2. An inhibition study in sandwich-cultured rat hepatocytes suggested that TB-2 is a substrate for both breast cancer resistance protein (Bcrp) and multidrug resistance-associated protein 2 (Mrp2), consistent with its high biliary excretion index (43.1–44.9%). This hypothesis was further verified in BCRP and MRP2 membrane vesicles. The cooperation of uptake and efflux transporters in TB-2 hepatic disposition could partially explain the double-peak phenomenon observed in rat plasma and liver and biliary clearance, which accounted for 70% of the total TB-2 clearance. Moreover, TB-2 significantly increased the rosuvastatin concentration in rat plasma in a concentration-dependent manner and decreased its biliary excretion, which corresponded to reductions in rosuvastatin accumulation in hepatocytes and the biliary excretion index in sandwich-cultured rat hepatocytes, representing a perfect example of a potential saponin-statin drug-drug interaction. These studies demonstrate that transporters (Oatp, Bcrp/Mrp2), but not metabolism, contribute significantly to rat TB-2 hepatobiliary disposition.
Footnotes
- Received July 11, 2014.
- Accepted October 21, 2014.
J.S. and X.T. contributed equally to this work.
This study was supported by the State Key Program of National Natural Science Foundation of China [Grant 81030065]; National Science Foundation of China [Grants 81302836 and 81274055]; Major National Science and Technology Programs [Grants 2012ZX09301001-006 and 2012ZX09302003]; and the National High Technology Research and Development Program of China [Grant 2013AA032202].
↵
This article has supplemental material available at dmd.aspetjournals.org.
- Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|