Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Xenobiotic Metabolism in Mice Lacking the UDP-Glucuronosyltransferase 2 Family

Matthew J. Fay, My Trang Nguyen, John N. Snouwaert, Rebecca Dye, Delores J. Grant, Wanda M. Bodnar and Beverly H. Koller
Drug Metabolism and Disposition December 2015, 43 (12) 1838-1846; DOI: https://doi.org/10.1124/dmd.115.065482
Matthew J. Fay
Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
My Trang Nguyen
Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John N. Snouwaert
Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rebecca Dye
Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Delores J. Grant
Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wanda M. Bodnar
Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Beverly H. Koller
Department of Genetics (M.J.F., M.T.N., J.N.S., R.D.), Department of Environmental Sciences and Engineering (W.M.B.), and Department of Medicine, Pulmonary and Critical Care Division (B.H.K.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Biology and Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina (D.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

UDP-Glucuronosyltransferases (UGTs) conjugate a glucuronyl group from glucuronic acid to a wide range of lipophilic substrates to form a hydrophilic glucuronide conjugate. The glucuronide generally has decreased bioactivity and increased water solubility to facilitate excretion. Glucuronidation represents an important detoxification pathway for both endogenous waste products and xenobiotics, including drugs and harmful industrial chemicals. Two clinically significant families of UGT enzymes are present in mammals: UGT1s and UGT2s. Although the two families are distinct in gene structure, studies using recombinant enzymes have shown considerable overlap in their ability to glucuronidate many substrates, often obscuring the relative importance of the two families in the clearance of particular substrates in vivo. To address this limitation, we have generated a mouse line, termed ΔUgt2, in which the entire Ugt2 gene family, extending over 609 kilobase pairs, is excised. This mouse line provides a means to determine the contributions of the two UGT families in vivo. We demonstrate the utility of these animals by defining for the first time the in vivo contributions of the UGT1 and UGT2 families to glucuronidation of the environmental estrogenic agent bisphenol A (BPA). The highest activity toward this chemical is reported for human and rodent UGT2 enzymes. Surprisingly, our studies using the ΔUgt2 mice demonstrate that, while both UGT1 and UGT2 isoforms can conjugate BPA, clearance is largely dependent on UGT1s.

Footnotes

    • Received June 8, 2015.
    • Accepted September 8, 2015.
  • This work was supported by the United States Public Health Service [Grants ES021838 and HL107780]; the National Institute of Environmental Health Sciences [Grant P30ES010126]; and SURF and Taylor Honors Research Fellowship grants from UNC-Chapel Hill.

  • dx.doi.org/10.1124/dmd.115.065482.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 43 (12)
Drug Metabolism and Disposition
Vol. 43, Issue 12
1 Dec 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Xenobiotic Metabolism in Mice Lacking the UDP-Glucuronosyltransferase 2 Family
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Mice Lacking the Ugt2 Locus

Matthew J. Fay, My Trang Nguyen, John N. Snouwaert, Rebecca Dye, Delores J. Grant, Wanda M. Bodnar and Beverly H. Koller
Drug Metabolism and Disposition December 1, 2015, 43 (12) 1838-1846; DOI: https://doi.org/10.1124/dmd.115.065482

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Mice Lacking the Ugt2 Locus

Matthew J. Fay, My Trang Nguyen, John N. Snouwaert, Rebecca Dye, Delores J. Grant, Wanda M. Bodnar and Beverly H. Koller
Drug Metabolism and Disposition December 1, 2015, 43 (12) 1838-1846; DOI: https://doi.org/10.1124/dmd.115.065482
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Determination of Acyl-, O-, and N-Glucuronide
  • TMDD Affects PK of IL-10 Fc-fusion Proteins
  • Uptake as the RDS in Pevonedistat Hepatic Clearance
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics