Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Characterization of CYP2B6 in a CYP2B6-Humanized Mouse Model: Inducibility in the Liver by Phenobarbital and Dexamethasone and Role in Nicotine Metabolism In Vivo

Zhihua Liu, Lei Li, Hong Wu, Jing Hu, Jun Ma, Qing-Yu Zhang and Xinxin Ding
Drug Metabolism and Disposition February 2015, 43 (2) 208-216; DOI: https://doi.org/10.1124/dmd.114.061812
Zhihua Liu
Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lei Li
Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hong Wu
Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jing Hu
Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jun Ma
Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qing-Yu Zhang
Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xinxin Ding
Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

The aim of this study was to further characterize the expression and function of human CYP2B6 in a recently generated CYP2A13/2B6/2F1-transgenic (TG) mouse model, in which CYP2B6 is expressed selectively in the liver. The inducibility of CYP2B6 by phenobarbital (PB) and dexamethasone (DEX), known inducers of CYP2B6 in human liver, was examined in the TG mice, as well as in TG/Cyp2abfgs-null (or “CYP2B6-humanized”) mice. Hepatic expression of CYP2B6 mRNA and protein was greatly induced by PB or DEX treatment in both TG and TG/Cyp2abfgs-null mice. Function of the transgenic CYP2B6 was first studied using bupropion as a probe substrate. In PB-treated mice, the rates of hepatic microsomal hydroxybupropion formation (at 50 μM bupropion) were >4-fold higher in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice (for both male and female mice); the rate difference was accompanied by a 5-fold higher catalytic efficiency in the TG/Cyp2abfgs-null mice and was abolished by an antibody to CYP2B6. The ability of CYP2B6 to metabolize nicotine was then examined, both in vitro and in vivo. The rates of hepatic microsomal cotinine formation from nicotine were significantly higher in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice, pretreated with PB or DEX. Furthermore, systemic nicotine metabolism was faster in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice. Thus, the transgenic CYP2B6 was inducible and functional, and, in the absence of mouse CYP2A and CYP2B enzymes, it contributed to nicotine metabolism in vivo. The CYP2B6-humanized mouse will be valuable for studies on in vivo roles of hepatic CYP2B6 in xenobiotic metabolism and toxicity.

Footnotes

    • Received October 29, 2014.
    • Accepted November 18, 2014.
  • Z.L. and L.L. contributed equally to this work.

  • This work was supported in part by the National Institutes of Health [Grants CA092596 and ES020867].

  • dx.doi.org/10.1124/dmd.114.061812.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 43 (2)
Drug Metabolism and Disposition
Vol. 43, Issue 2
1 Feb 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of CYP2B6 in a CYP2B6-Humanized Mouse Model: Inducibility in the Liver by Phenobarbital and Dexamethasone and Role in Nicotine Metabolism In Vivo
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

A CYP2B6-Humanized Mouse Model

Zhihua Liu, Lei Li, Hong Wu, Jing Hu, Jun Ma, Qing-Yu Zhang and Xinxin Ding
Drug Metabolism and Disposition February 1, 2015, 43 (2) 208-216; DOI: https://doi.org/10.1124/dmd.114.061812

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

A CYP2B6-Humanized Mouse Model

Zhihua Liu, Lei Li, Hong Wu, Jing Hu, Jun Ma, Qing-Yu Zhang and Xinxin Ding
Drug Metabolism and Disposition February 1, 2015, 43 (2) 208-216; DOI: https://doi.org/10.1124/dmd.114.061812
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cytochrome P450 4F11 in lung cancer
  • SLC49A4-mediated pyrilamine transport
  • Functional Characterization of 29 CYP4F2 Variants
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics